Sensitivity analysis of the nanofluid flow over a stretching flat surface

被引:2
作者
Shahzad, A. [1 ]
Khan, W. A. [2 ]
Gul, R. [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Abbottabad 22060, Pakistan
[2] Prince Mohammad Bin Fahd Univ, Coll Engn, Dept Mech Engn, Al Khobar 31952, Saudi Arabia
[3] COMSATS Univ Islamabad, Dept Math, Wah Campus, Islamabad, Pakistan
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 01期
关键词
Sensitivity; boundary layer; nanofluid; Nusselt and Sherwood numbers; response surface methodology; STAGNATION-POINT FLOW; BOUNDARY-LAYER-FLOW; AL2O3/H2O NANOFLUID; HEAT-TRANSFER; POROUS-MEDIUM; SHEET; GENERATION; RADIATION;
D O I
10.1007/s12043-022-02493-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, the sensitivity caused by the input parameters, such as Lewis number (Le), thermophoresis parameter (N-t) and Brownian motion parameter (N-b) of a nanofluid flow past a stretching flat surface is studied using response surface methodology (RSM). The mathematical model is solved using numerical technique and Nusselt and Sherwood numbers are considered as quantities of interest. The involved parameters, such as Lewis number, thermophoresis parameter and Brownian motion parameter, are varied for arbitrary values in the interval. A central composite design is used to obtain the quadratic model for the output, such as Nusselt and Sherwood numbers. It is found that reduced Nusselt number is most sensitive towards the Brownian motion parameter (Nb) in the interval 5 <= L-e <= 25. Sherwood number is sensitive towards thermophoresis parameter in the interval 5 <= L-e <= 25 for fixed Brownian motion parameter (N-b = 0.3).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sensitivity analysis of the nanofluid flow over a stretching flat surface
    A Shahzad
    W A Khan
    R Gul
    Pramana, 97
  • [2] Sensitivity Analysis for Sisko Nanofluid Flow Through Stretching Surface Using Response Surface Methodology
    Upreti, Himanshu
    Uddin, Ziya
    Pandey, Alok Kumar
    Joshi, Navneet
    NANO, 2024,
  • [3] Thermodynamic entropy of a magnetized nanofluid flow over an inclined stretching cylindrical surface
    Garvandha, Mahesh
    Gajjela, Nagaraju
    Narla, Vamsikrishna
    Kumar, Devendra
    JOURNAL OF THERMAL ENGINEERING, 2024, 10 (05): : 1253 - 1265
  • [4] Model-based analysis of micropolar nanofluid flow over a stretching surface
    Hussain, S. T.
    Nadeem, Sohail
    Ul Haq, Rizwan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (08):
  • [5] Analytical Solution for Maxwell Nanofluid Boundary Layer Flow over a Stretching Surface
    Halim, N. A.
    Noor, N. F. M.
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [6] Boundary layer flow of nanofluid over an exponentially stretching surface
    Nadeem, Sohail
    Lee, Changhoon
    NANOSCALE RESEARCH LETTERS, 2012, 7 : 1 - 6
  • [7] MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles
    Naramgari, Sandeep
    Sulochana, C.
    AIN SHAMS ENGINEERING JOURNAL, 2016, 7 (02) : 709 - 716
  • [8] Dusty Casson Nanofluid Flow with Thermal Radiation Over a Permeable Exponentially Stretching Surface
    Hussain, Syed Asif
    Ali, Gohar
    Muhammad, Sher
    Shah, Syed Inayat Ali
    Ishaq, Mohammad
    Khan, Hamid
    JOURNAL OF NANOFLUIDS, 2019, 8 (04) : 714 - 724
  • [9] Thermal Analysis of Nanofluid Flow over a Curved Stretching Surface Suspended by Carbon Nanotubes with Internal Heat Generation
    Saba, Fitnat
    Ahmed, Naveed
    Hussain, Saqib
    Khan, Umar
    Mohyud-Din, Syed Tauseef
    Darus, Maslina
    APPLIED SCIENCES-BASEL, 2018, 8 (03):
  • [10] Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface
    Yacob, Nor Azizah
    Dzulkifli, Nor Fadhilah
    Salleh, Siti Nur Alwani
    Ishak, Anuar
    Pop, Ioan
    MATHEMATICS, 2022, 10 (01)