Sensitivity analysis of the nanofluid flow over a stretching flat surface

被引:3
作者
Shahzad, A. [1 ]
Khan, W. A. [2 ]
Gul, R. [3 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Abbottabad Campus, Abbottabad 22060, Pakistan
[2] Prince Mohammad Bin Fahd Univ, Coll Engn, Dept Mech Engn, Al Khobar 31952, Saudi Arabia
[3] COMSATS Univ Islamabad, Dept Math, Wah Campus, Islamabad, Pakistan
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 01期
关键词
Sensitivity; boundary layer; nanofluid; Nusselt and Sherwood numbers; response surface methodology; STAGNATION-POINT FLOW; BOUNDARY-LAYER-FLOW; AL2O3/H2O NANOFLUID; HEAT-TRANSFER; POROUS-MEDIUM; SHEET; GENERATION; RADIATION;
D O I
10.1007/s12043-022-02493-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, the sensitivity caused by the input parameters, such as Lewis number (Le), thermophoresis parameter (N-t) and Brownian motion parameter (N-b) of a nanofluid flow past a stretching flat surface is studied using response surface methodology (RSM). The mathematical model is solved using numerical technique and Nusselt and Sherwood numbers are considered as quantities of interest. The involved parameters, such as Lewis number, thermophoresis parameter and Brownian motion parameter, are varied for arbitrary values in the interval. A central composite design is used to obtain the quadratic model for the output, such as Nusselt and Sherwood numbers. It is found that reduced Nusselt number is most sensitive towards the Brownian motion parameter (Nb) in the interval 5 <= L-e <= 25. Sherwood number is sensitive towards thermophoresis parameter in the interval 5 <= L-e <= 25 for fixed Brownian motion parameter (N-b = 0.3).
引用
收藏
页数:10
相关论文
共 22 条
[1]   Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: Flow and sensitivity analysis [J].
Abdelmalek, Zahra ;
Mahanthesh, B. ;
Basir, Md Faisal Md ;
Imtiaz, Maria ;
Mackolil, Joby ;
Khan, Noor Saeed ;
Nabwey, Hossam A. ;
Tlili, I. .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) :3991-4011
[2]   A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate [J].
Ahmadi, A. R. ;
Zahmatkesh, A. ;
Hatami, M. ;
Ganji, D. D. .
POWDER TECHNOLOGY, 2014, 258 :125-133
[3]   Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis [J].
Arani, Ali Akbar Abbasian ;
Aberoumand, Hossein .
POWDER TECHNOLOGY, 2021, 380 :152-163
[4]   Sensitivity Analysis of Entropy Generation in Nanofluid Flow inside a Channel by Response Surface Methodology [J].
Darbari, Bijan ;
Rashidi, Saman ;
Esfahani, Javad Abolfazli .
ENTROPY, 2016, 18 (02)
[5]   Numerical investigation and sensitivity analysis of entropy generation of Al2O3/H2O nanofluid in turbulent regime using response surface methodology [J].
Fadodun, Olatomide G. ;
Olokuntoye, Bolanle A. ;
Salau, Ayodeji O. ;
Amosun, Adebimpe A. .
ARCHIVES OF THERMODYNAMICS, 2020, 41 (02) :119-146
[6]   Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop of Al2O3/H2O nanofluid in straight pipe using response surface methodology [J].
Fadodun, Olatomide G. ;
Amosun, Adebimpe A. ;
Salau, Ayodeji O. ;
Olaloye, David O. ;
Ogundeji, Johnson A. ;
Ibitoye, Francis I. ;
Balogun, Fatai A. .
ARCHIVES OF THERMODYNAMICS, 2020, 41 (01) :3-30
[7]   Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe [J].
Fadodun, Olatomide G. ;
Amosun, Adebimpe A. ;
Okoli, Nonso L. ;
Olaloye, David O. ;
Durodola, Solomon S. ;
Ogundeji, Johnson A. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (01) :431-444
[8]  
Keppel G., 1973, Design and analysis: a researcher's handbook
[9]   Effects of magnetic field on radiative flow of a nanofluid past a stretching sheet [J].
Khan, Md. Shakhaoath ;
Alam, Md. Mahmud ;
Ferdows, M. .
5TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, 2013, 56 :316-322
[10]   Boundary-layer flow of a nanofluid past a stretching sheet [J].
Khan, W. A. ;
Pop, I. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (11-12) :2477-2483