Searching for Barium Stars from the LAMOST Spectra Using the Machine-learning Method: I

被引:5
作者
Guo, Fengyue [1 ]
Cheng, Zhongding [1 ]
Kong, Xiaoming [1 ]
Zhang, Yatao [1 ]
Bu, Yude [2 ]
Yi, Zhenping [1 ]
Du, Bing [3 ]
Pan, Jingchang [1 ]
机构
[1] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Shandong, Peoples R China
[2] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
[3] Chinese Acad Sci, Natl Astron Observ, Key Lab Opt Astron, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
ABUNDANCE ANALYSIS; CLASSIFICATION; CANDIDATES; ELEMENTS;
D O I
10.3847/1538-3881/aca323
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Barium stars are chemically peculiar stars that exhibit enhancement of s-process elements. Chemical abundance analysis of barium stars can provide crucial clues for the study of the chemical evolution of the Galaxy. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) has released more than 6 million low-resolution spectra of FGK-type stars by Data Release 9, which can significantly increase the sample size of barium stars. In this paper, we used machine-learning algorithms to search for barium stars from low-resolution spectra of LAMOST. We have applied the Light Gradient Boosting Machine (LGBM) algorithm to build classifiers of barium stars based on different features, and build predictors for determining [Ba/Fe] and [Sr/Fe] of barium candidates. The classification with features in the whole spectrum performs best: for the sample with strontium enhancement, Precision = 97.81% and Recall = 96.05%; for the sample with barium enhancement, Precision = 96.03% and Recall = 97.70%. In prediction, [Ba/Fe] estimated from Ba ii line at 4554 angstrom has smaller dispersion than that from Ba ii line at 4934 angstrom: MAE(4554 angstrom) = 0.07, sigma (4554 angstrom) = 0.12. [Sr/Fe] estimated from Sr ii line at 4077 angstrom performs better than that from Sr ii line at 4215 angstrom: MAE(4077 angstrom) = 0.09, sigma (4077 angstrom) = 0.16. A comparison of the LGBM and other popular algorithms shows that LGBM is accurate and efficient in classifying barium stars. This work demonstrated that machine learning can be used as an effective means to identify chemically peculiar stars and determine their elemental abundance.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[2]   Analysis of 26 barium stars - I. Abundances [J].
Allen, D. M. ;
Barbuy, B. .
ASTRONOMY & ASTROPHYSICS, 2006, 454 (03) :895-U91
[3]   OBJECTIVE-PRISM DISCOVERIES IN THE DECLINATION ZONE 0-DEGREES TO-20-DEGREES [J].
BIDELMAN, WP .
ASTRONOMICAL JOURNAL, 1981, 86 (04) :553-556
[4]   THE BA-II STARS [J].
BIDELMAN, WP ;
KEENAN, PC .
ASTROPHYSICAL JOURNAL, 1951, 114 (03) :473-&
[5]  
BOFFIN HMJ, 1988, ASTRON ASTROPHYS, V205, P155
[6]   Stellar spectral subclasses classification based on Isomap and SVM [J].
Bu, Yude ;
Chen, Fuqiang ;
Pan, Jingchang .
NEW ASTRONOMY, 2014, 28 :35-43
[7]  
Cai B., 2022, ARXIV221106608
[8]   The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) [J].
Cui, Xiang-Qun ;
Zhao, Yong-Heng ;
Chu, Yao-Quan ;
Li, Guo-Ping ;
Li, Qi ;
Zhang, Li-Ping ;
Su, Hong-Jun ;
Yao, Zheng-Qiu ;
Wang, Ya-Nan ;
Xing, Xiao-Zheng ;
Li, Xin-Nan ;
Zhu, Yong-Tian ;
Wang, Gang ;
Gu, Bo-Zhong ;
Luo, A-Li ;
Xu, Xin-Qi ;
Zhang, Zhen-Chao ;
Liu, Gen-Rong ;
Zhang, Hao-Tong ;
Yang, De-Hua ;
Cao, Shu-Yun ;
Chen, Hai-Yuan ;
Chen, Jian-Jun ;
Chen, Kun-Xin ;
Chen, Ying ;
Chu, Jia-Ru ;
Feng, Lei ;
Gong, Xue-Fei ;
Hou, Yong-Hui ;
Hu, Hong-Zhuan ;
Hu, Ning-Sheng ;
Hu, Zhong-Wen ;
Jia, Lei ;
Jiang, Fang-Hua ;
Jiang, Xiang ;
Jiang, Zi-Bo ;
Jin, Ge ;
Li, Ai-Hua ;
Li, Yan ;
Li, Ye-Ping ;
Liu, Guan-Qun ;
Liu, Zhi-Gang ;
Lu, Wen-Zhi ;
Mao, Yin-Dun ;
Men, Li ;
Qi, Yong-Jun ;
Qi, Zhao-Xiang ;
Shi, Huo-Ming ;
Tang, Zheng-Hong ;
Tao, Qing-Sheng .
RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2012, 12 (09) :1197-1242
[9]   Chemical abundances and kinematics of barium stars [J].
de Castro, D. B. ;
Pereira, C. B. ;
Roig, F. ;
Jilinski, E. ;
Drake, N. A. ;
Chavero, C. ;
Sales Silva, J. V. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (04) :4299-4324
[10]  
Forman G., 2003, Journal of Machine Learning Research, V3, P1289, DOI 10.1162/153244303322753670