Markovian Linearization of Random Walks on Groups

被引:0
作者
Bordenave, Charles L. [1 ,2 ]
Dubail, Bastien [3 ,4 ]
机构
[1] Inst Math Marseille, CNRS, Marseille, France
[2] Aix Marseille Univ, Marseille, France
[3] PSL Res Univ, Dept Informat, CNRS, Ecole Normale Super,ENS, F-75005 Paris, France
[4] INRIA, F-75012 Paris, France
关键词
ASYMPTOTIC ENTROPY; BOUNDARY;
D O I
10.1093/imrn/rnac045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In operator algebra, the linearization trick is a technique that reduces the study of a non-commutative polynomial evaluated at elements of an algebra A to the study of a polynomial of degree one, evaluated on the enlarged algebra A circle times M-r(C), for some integer r. We introduce a new instance of the linearization trick that is tailored to study a finitely supported random walk G by studying instead a nearest-neighbour coloured random walk on G x {1, ... ,r}, which is much simpler to analyze. As an application, we extend well-known results for nearest-neighbour walks on free groups and free products of finite groups to coloured random walks, thus showing how one can obtain new results for finitely supported random walks, namely an explicit description of the harmonic measure and formulas for the entropy and drift.
引用
收藏
页码:9185 / 9220
页数:36
相关论文
共 32 条
  • [1] Asymptotic entropy and Green speed for random walks on countable groups
    Blachere, Sebastien
    Haissinsky, Peter
    Mathieu, Pierre
    [J]. ANNALS OF PROBABILITY, 2008, 36 (03) : 1134 - 1152
  • [2] Bordenave, 2020, PREPRINT ARXIV201114
  • [3] Bougerol P., 1985, PRODUCTS RANDOM MATR, V8
  • [4] Carmona R., 2012, Spectral Theory of Random SchrDinger Operators
  • [5] HYPERFINITE VON NEUMANN ALGEBRAS AND POISSON BOUNDARIES OF TIME-DEPENDENT RANDOM-WALKS
    CONNES, A
    WOODS, EJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1989, 137 (02) : 225 - 243
  • [6] RANDOM-WALK ON FREE GROUP AND MARTIN BOUNDARY
    DERRIENNIC, Y
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 32 (04): : 261 - 276
  • [7] Derriennic Y., 1980, ASTERISQUE, V74, P283
  • [8] Dykema K, 2006, CONTEMP MATH, V394, P87
  • [9] Asymptotic entropy of transformed random walks
    Forghani, Behrang
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1480 - 1491
  • [10] Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [10.1090/S0002-9947-1, 10.1090/S0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0]