A characterization of the algebraic degree in semidefinite programming

被引:1
作者
Hiep, Dang Tuan [1 ]
Giao, Nguyen Thi Ngoc [2 ]
Van, Nguyen Thi Mai [3 ]
机构
[1] Da Lat Univ, Fac Math & Comp Sci, 1 Phu Dong Thien Vuong, Da Lat, Lam Dong, Vietnam
[2] Univ Sci & Technol, Fac Adv Sci & Technol, Univ Da Nang, Da Nang, Vietnam
[3] Quy Nhon Univ, Fac Math & Stat, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam
关键词
Schubert calculus; Algebraic degree; Semidefinite programming; GEOMETRY; FORMULA;
D O I
10.1007/s13348-022-00358-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we show that the algebraic degree in semidefinite programming can be expressed in terms of the coefficient of a certain monomial in a doubly symmetric polynomial. This characterization of the algebraic degree allows us to use the theory of symmetric polynomials to obtain many interesting results of Nie, Ranestad and Sturmfels in a simpler way.
引用
收藏
页码:443 / 455
页数:13
相关论文
共 13 条
[1]  
Cox DA., 1999, MATH SURVEYS MONOGRA, V68
[2]   An identity involving symmetric polynomials and the geometry of Lagrangian Grassmannians [J].
Dang Tuan Hiep ;
Nguyen Chanh Tu .
JOURNAL OF ALGEBRA, 2021, 565 :564-581
[3]   A FORMULA FOR THE ALGEBRAIC DEGREE IN SEMIDEFINITE PROGRAMMING [J].
Dang Tuan Hiep .
KODAI MATHEMATICAL JOURNAL, 2016, 39 (03) :484-488
[4]  
Egge ES., 2019, INTRO SYMMETRIC FUNC, DOI [10.1090/stml/091, DOI 10.1090/STML/091]
[5]   A general formula for the algebraic degree in semidefinite programming [J].
Graf von Bothmer, Hans-Christian ;
Ranestad, Kristian .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :193-197
[6]   Sequences of Enumerative Geometry: Congruences and Asymptotics [J].
Grunberg, Daniel B. ;
Moree, Pieter ;
Zagier, Don .
EXPERIMENTAL MATHEMATICS, 2008, 17 (04) :409-426
[7]   Identities involving (doubly) symmetric polynomials and integrals over Grassmannians [J].
Hiep, Dang Tuan .
FUNDAMENTA MATHEMATICAE, 2019, 246 (02) :181-191
[8]   ON GIAMBELLI THEOREM ON COMPLETE CORRELATIONS [J].
LAKSOV, D ;
LASCOUX, A ;
THORUP, A .
ACTA MATHEMATICA, 1989, 162 (3-4) :143-199
[9]  
MacDonald I.G., 1998, Symmetric Functions and Orthogonal Polynomials
[10]  
Manivel L., 2020, ARXIV201108791