Succinylation of a KEAP1 sensor lysine promotes NRF2 activation

被引:15
|
作者
Ibrahim, Lara [1 ,2 ]
Stanton, Caroline [1 ,2 ]
Nutsch, Kayla [2 ]
Nguyen, Thu [2 ]
Li-Ma, Chloris [2 ]
Ko, Yeonjin [2 ]
Lander, Gabriel C. [3 ]
Wiseman, R. Luke [1 ]
Bollong, Michael J. [2 ]
机构
[1] Scripps Res Inst, Dept Mol Med, San Diego, CA 92037 USA
[2] Scripps Res, Dept Chem, San Diego, CA 92037 USA
[3] Scripps Res, Dept Integrat Struct & Computat Biol, San Diego, CA 92037 USA
关键词
SUCCINATION; STRESS;
D O I
10.1016/j.chembiol.2023.07.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cross talk between metabolism and stress-responsive signaling is essential for maintaining cellular homeo-stasis. This cross talk is often achieved through covalent modification of proteins by endogenous, reactive metabolites that regulate key stress-responsive transcription factors like NRF2. Metabolites including meth-ylglyoxal, glyceraldehyde 3-phosphate, fumarate, and itaconate covalently modify sensor cysteines of the NRF2 repressor KEAP1, resulting in stabilization of NRF2 and activation of its cytoprotective transcriptional program. Here, we employed a shRNA-based screen targeting the enzymes of central carbon metabolism to identify additional regulatory nodes bridging metabolism to NRF2 activation. Succinic anhydride, increased by genetic depletion of the TCA cycle enzyme succinyl-CoA synthetase or by direct administration, results in N-succinylation of lysine 131 of KEAP1 to activate NRF2 signaling. This study identifies KEAP1 as capable of sensing reactive metabolites not only by several cysteine residues but also by a conserved lysine residue, indicating its potential to sense an expanded repertoire of reactive metabolic messengers.
引用
收藏
页码:1295 / +
页数:13
相关论文
共 50 条
  • [31] Thermodynamic profiling of inhibitors of Nrf2: Keap1 interactions
    Nasiri, Hamid R.
    Linge, Sandra
    Ullmann, Dirk
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2016, 26 (02) : 526 - 529
  • [32] Modulation of NRF2/KEAP1 Signaling by Phytotherapeutics in Periodontitis
    Tossetta, Giovanni
    Fantone, Sonia
    Togni, Lucrezia
    Santarelli, Andrea
    Olivieri, Fabiola
    Marzioni, Daniela
    Rippo, Maria Rita
    ANTIOXIDANTS, 2024, 13 (10)
  • [33] KEAP1 and done? Targeting the NRF2 pathway with sulforaphane
    Kensler, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [35] Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling
    Lo, Shih-Ching
    Li, Xuchu
    Henzl, Michael T.
    Beamer, Lesa J.
    Hannink, Mark
    EMBO JOURNAL, 2006, 25 (15): : 3605 - 3617
  • [36] Tethering of Nrf2 to Keap1 prevents Nrf2 degradation by the ubiquitin proteasome pathway
    Sekhar, K
    Yan, X
    Freeman, M
    FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 : S350 - S351
  • [37] Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway
    Hassanein, Emad H. M.
    Sayed, Ahmed M.
    Hussein, Omnia E.
    Mahmoud, Ayman M.
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020, 2020
  • [38] Electrophilic metabolites targeting the KEAP1/NRF2 partnership
    Dinkova-Kostova, Albena T.
    Hakomaki, Henriikka
    Levonen, Anna-Liisa
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2024, 78
  • [39] Role of the Keap1/Nrf2 pathway in neurodegenerative diseases
    Yamazaki, Hiromi
    Tanji, Kunikazu
    Wakabayashi, Koichi
    Matsuura, Shin
    Itoh, Ken
    PATHOLOGY INTERNATIONAL, 2015, 65 (05) : 210 - 219
  • [40] Mutational and expressional analyses if NRF2 and KEAP1 in sarcomas
    Je, Eun Mi
    An, Chang Hyeok
    Yoo, Nam Jin
    Lee, Sug Hyung
    TUMORI, 2012, 98 (04) : 510 - 515