PSSTFN: A Progressive Spatial-Temporal-Spectral Fusion Network for Remote Sensing Images

被引:1
作者
Chen, Xu [1 ]
Meng, Xiangchao [1 ]
Shao, Feng [1 ]
Sun, Weiwei [2 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315211, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Spatial resolution; Image resolution; Image fusion; Deep learning; Sun; MODIS; Learning systems; Deep learning (DL); Sentinel-2 multispectral (MS) image; spatial-temporal-spectral fusion (STSF); Ziyuan (ZY)-1 02D hyperspectral (HS) image; INTEGRATED FUSION; RESOLUTION; LANDSAT; SPARSE; PLUS; MS;
D O I
10.1109/TGRS.2023.3329531
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spatial-temporal-spectral fusion (STSF) is highly desirable to generate dense-time image series with high spatial and spectral resolution by integrating the complementary advantages of multisource and multitemporal observations. However, most existing STSF methods are still limited to the assumption of linear temporal, spatial, and spectral relationships. In addition, the STSF methods on Landsat and MODIS data are insufficient to characterize the inherent properties of the current spaceborne hyperspectral (HS) images with low spatial and temporal resolutions. For these, we propose a progressive STSF network (PSSTFN) by interestingly integrating spatial-spectral fusion and spectral-temporal fusion into a unified end-to-end STSF framework. Specifically, in the spatial-spectral fusion stage, we obtain the hierarchical features with different receptive fields and propose a multiattention guided (MAG) module for joint learning and refinement of spatial-spectral features. In the spectral-temporal fusion stage, a feature insertion module (FIM) is presented to embed the difference images into the resulting spatial-spectral features, and the estimation from deeper layers is cascaded for more reliable spatial information. We build the Dongying (DY) and Yellow River Estuary (YRE) remote sensing datasets based on Sentinel-2 and ZiYuan (ZY)-1 02D satellites for verification, and the experimental results on reduce- and full-resolution data demonstrate the superior performance of our method over the existing methods visually and quantitatively.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 53 条
[1]   In Defense of Shallow Learned Spectral Reconstruction from RGB Images [J].
Aeschbacher, Jonas ;
Wu, Jiqing ;
Timofte, Radu .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :471-479
[2]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[3]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[4]   A Comparison Between Global and Context-Adaptive Pansharpening of Multispectral Images [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Lotti, Franco ;
Selva, Massimo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) :302-306
[5]  
Al-Wassai F. A., 2011, Int. J. Glob. Res. Comput. Sci., V2, P70
[6]   A survey of classical methods and new trends in pansharpening of multispectral images [J].
Amro, Israa ;
Mateos, Javier ;
Vega, Miguel ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
[7]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[8]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[9]   A variational model for P+XS image fusion [J].
Ballester, Coloma ;
Caselles, Vicent ;
Igual, Laura ;
Verdera, Joan ;
Rougé, Bernard .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 69 (01) :43-58
[10]   HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1757-1767