Bayesian multivariate nonlinear mixed models for censored longitudinal trajectories with non-monotone missing values

被引:2
作者
Wang, Wan-Lun [3 ,4 ]
Castro, Luis M. [5 ,6 ]
Lin, Tsung-, I [1 ,2 ]
机构
[1] Natl Chung Hsing Univ, Inst Stat, Taichung 402, Taiwan
[2] China Med Univ, Dept Publ Hlth, Taichung 404, Taiwan
[3] Natl Cheng Kung Univ, Dept Stat, Tainan 701, Taiwan
[4] Natl Cheng Kung Univ, Inst Data Sci, Tainan 701, Taiwan
[5] Pontificia Univ Catolica Chile, Dept Stat, Casilla 306, Correo 22, Santiago, Chile
[6] Ctr Discovery Struct Complex Data, Casilla 306, Correo 22, Santiago, Chile
关键词
Censored data recovery; Markov chain Monte Carlo; Missing data imputation; Posterior sampling; Truncated multivariate normal distribution; RESPONSES; DISTRIBUTIONS; INFERENCE; SKEWNESS; ERRORS;
D O I
10.1007/s00184-023-00929-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The analysis of multivariate longitudinal data may often encounter a difficult task, particularly in the presence of censored measurements induced by detection limits and intermittently missing values arising when subjects do not respond to a part of outcomes during scheduled visits. The multivariate nonlinear mixed model (MNLMM) has emerged as a promising analytical tool for multi-outcome longitudinal data following arbitrarily nonlinear profiles with random phenomena. This article presents a generalization of the MNLMM, called MNLMM-CM, designed to simultaneously accommodate the effects of censorship and missingness within a Bayesian framework. Specifically, we develop a Markov chain Monte Carlo procedure that combines a Gibbs sampler with the Metropolis-Hastings algorithm. This hybrid approach facilitates Bayesian estimation of essential model parameters and imputation of non-responses under the missing at random mechanism. The issue of posterior predictive inference for the censored and missing outcomes is also addressed. The effectiveness and performance of the proposed methodology are demonstrated through the analysis of simulated data and a real example from an AIDS clinical study.
引用
收藏
页码:585 / 605
页数:21
相关论文
共 45 条
[1]   Comparison of two indinavir/ritonavir regimens in the treatment of HIV-infected individuals [J].
Acosta, EP ;
Wu, HL ;
Hammer, SM ;
Yu, S ;
Kuritzkes, DR ;
Walawander, A ;
Eron, JJ ;
Fichtenbaum, CJ ;
Pettinelli, C ;
Neath, D ;
Ferguson, E ;
Saah, AJ ;
Gerber, JG .
JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2004, 37 (03) :1358-1366
[2]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[3]   Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :367-389
[4]   Robust Joint Non-linear Mixed-Effects Models and Diagnostics for Censored HIV Viral Loads with CD4 Measurement Error [J].
Bandyopadhyay, Dipankar ;
Castro, Luis M. ;
Lachos, Victor H. ;
Pinheiro, Hildete P. .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (01) :121-139
[5]   Skew-normal/independent linear mixed models for censored responses with applications to HIV viral loads [J].
Bandyopadhyay, Dipankar ;
Lachos, Victor H. ;
Castro, Luis M. ;
Dey, Dipak K. .
BIOMETRICAL JOURNAL, 2012, 54 (03) :405-425
[6]   A general class of multivariate skew-elliptical distributions [J].
Branco, MD ;
Dey, DK .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 79 (01) :99-113
[7]  
Brooks SP, 2002, J R STAT SOC B, V64, P616
[8]   General methods for monitoring convergence of iterative simulations [J].
Brooks, SP ;
Gelman, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (04) :434-455
[9]   Bayesian semiparametric mixture Tobit models with left censoring, skewness, and covariate measurement errors [J].
Dagne, Getachew A. ;
Huang, Yangxin .
STATISTICS IN MEDICINE, 2013, 32 (22) :3881-3898
[10]   Non-linear random effects models with continuous time autoregressive errors:: a Bayesian approach [J].
De la Cruz-Mesía, R ;
Marshall, G .
STATISTICS IN MEDICINE, 2006, 25 (09) :1471-1484