Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection

被引:12
作者
Mao, Xiaolei [1 ]
Xu, Minghui [1 ]
Luo, Shuyin [1 ]
Yang, Yi [1 ]
Zhong, Jiaye [1 ]
Zhou, Jiawei [1 ]
Fan, Huayan [1 ]
Li, Xiaoping [1 ,2 ]
Chen, Zhi [3 ]
机构
[1] Zhejiang Shuren Univ, Shulan Int Med Coll, Key Lab Pollut Exposure & Hlth Intervent Zhejiang, Hangzhou, Peoples R China
[2] Macau Univ Sci & Technol, Fac Med, Taipa, Macao, Peoples R China
[3] Zhejiang Shuren Univ, Shulan Int Med Coll, Hangzhou, Peoples R China
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2023年 / 11卷
关键词
recombinase polymerase amplification; recombinase-aid amplification; CRISPR-cas; Cas12; Cas13; rapid inspection technology improvement; sherlock; DETECTR; NUCLEIC-ACID DETECTION; ASSAY; DNA;
D O I
10.3389/fbioe.2023.1273988
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the realm of pathogen detection, isothermal amplification technology has emerged as a swift, precise, and sensitive alternative to conventional PCR. This paper explores the fundamental principles of recombinase polymerase amplification (RPA) and recombinase-aid amplification (RAA) and reviews the current status of integrating the CRISPR-Cas system with RPA/RAA techniques. Furthermore, this paper explores the confluence of isothermal amplification and CRISPR-Cas technology, providing a comprehensive review and enhancements of existing combined methodologies such as SHERLOCK and DETECTR. We investigate the practical applications of RPA/RAA in conjunction with CRISPR-Cas for pathogen detection, highlighting how this integrated approach significantly advances both research and clinical implementation in the field. This paper aims to provide readers with a concise understanding of the fusion of RPA/RAA and CRISPR-Cas technology, offering insights into their clinical utility, ongoing enhancements, and the promising prospects of this integrated approach in pathogen detection.
引用
收藏
页数:12
相关论文
共 77 条
  • [1] C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    Abudayyeh, Omar O.
    Gootenberg, Jonathan S.
    Konermann, Silvana
    Joung, Julia
    Slaymaker, Ian M.
    Cox, David B. T.
    Shmakov, Sergey
    Makarova, Kira S.
    Semenova, Ekaterina
    Minakhin, Leonid
    Severinov, Konstantin
    Regev, Aviv
    Lander, Eric S.
    Koonin, Eugene V.
    Zhang, Feng
    [J]. SCIENCE, 2016, 353 (6299)
  • [2] Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2
    Arizti-Sanz, Jon
    Freije, Catherine A.
    Stanton, Alexandra C.
    Petros, Brittany A.
    Boehm, Chloe K.
    Siddiqui, Sameed
    Shaw, Bennett M.
    Adams, Gordon
    Kosoko-Thoroddsen, Tinna-Solveig F.
    Kemball, Molly E.
    Uwanibe, Jessica N.
    Ajogbasile, Fehintola V.
    Eromon, Philomena E.
    Gross, Robin
    Wronka, Loni
    Caviness, Katie
    Hensley, Lisa E.
    Bergman, Nicholas H.
    MacInnis, Bronwyn L.
    Happi, Christian T.
    Lemieux, Jacob E.
    Sabeti, Pardis C.
    Myhrvold, Cameron
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] CRISPR-Cas-Integrated LAMP
    Atceken, Nazente
    Yigci, Defne
    Ozdalgic, Berin
    Tasoglu, Savas
    [J]. BIOSENSORS-BASEL, 2022, 12 (11):
  • [4] Isothermal Amplification Technology for Disease Diagnosis
    Boonbanjong, Poramin
    Treerattrakoon, Kiatnida
    Waiwinya, Wassa
    Pitikultham, Piyawat
    Japrung, Deanpen
    [J]. BIOSENSORS-BASEL, 2022, 12 (09):
  • [5] Dead Cas Systems: Types, Principles, and Applications
    Brezgin, Sergey
    Kostyusheva, Anastasiya
    Kostyushev, Dmitry
    Chulanov, Vladimir
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (23)
  • [6] CRISPR-Cas12-based detection of SARS-CoV-2
    Broughton, James P.
    Deng, Xianding
    Yu, Guixia
    Fasching, Clare L.
    Servellita, Venice
    Singh, Jasmeet
    Miao, Xin
    Streithorst, Jessica A.
    Granados, Andrea
    Sotomayor-Gonzalez, Alicia
    Zorn, Kelsey
    Gopez, Allan
    Hsu, Elaine
    Gu, Wei
    Miller, Steve
    Pan, Chao-Yang
    Guevara, Hugo
    Wadford, Debra A.
    Chen, Janice S.
    Chiu, Charles Y.
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (07) : 870 - +
  • [7] CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
    Chen, Janice S.
    Ma, Enbo
    Harrington, Lucas B.
    Da Costa, Maria
    Tian, Xinran
    Palefsky, Joel M.
    Doudna, Jennifer A.
    [J]. SCIENCE, 2018, 360 (6387) : 436 - +
  • [8] Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test
    Chen, Yong
    Mei, Yixin
    Zhao, Xiaohui
    Jiang, Xingyu
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (21) : 14846 - 14852
  • [9] Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings
    Cherkaoui, Dounia
    Huang, Da
    Miller, Benjamin S.
    Turbe, Valerian
    McKendry, Rachel A.
    [J]. BIOSENSORS & BIOELECTRONICS, 2021, 189
  • [10] Rapid detection of influenza A viruses using a real-time reverse transcription recombinase-aided amplification assay
    Cui, Huan
    Zhang, Cheng
    Tu, Fei
    Zhao, Kui
    Kong, Yunyi
    Pu, Jie
    Zhang, Lei
    Chen, Zhaoliang
    Sun, Yuanyuan
    Wei, Yujie
    Liang, Chuncai
    Liu, Juxiang
    Liu, Jun
    Guo, Zhendong
    [J]. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 12