An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays

被引:12
作者
Momeni, Maede [1 ]
Shamloo, Amir [1 ,2 ]
Hasani-Gangaraj, Mojtaba [1 ]
Dezhkam, Rasool [1 ,2 ]
机构
[1] Sharif Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Sharif Univ Technol, Stem Cell & Regenerat Med Ctr, Tehran, Iran
关键词
LOD; Magnetophoresis; Secondary flow; Inertial separation; Hybrid method; Integrated microfluidics; BREAST-CANCER; PARTICLE SEPARATION;
D O I
10.1016/j.chroma.2023.464249
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer diagnosis has recently been at the forefront of recent medical research, with ongoing efforts to develop devices and technologies for detecting cancer in patients. One promising approach for cancer diagnosis is the detection of Circulating Tumor Cells (CTCs) in blood samples. Separating these rare cells from the diverse background of blood cells and analyzing them can provide valuable insights into the disease's stage and lethality. Here we present the design and fabrication of a centrifugal microfluidic platform on a polymeric disk that utilizes centrifugal forces for cell isolation. The separation units exploit both active and passive methods. In other words, in addition to introducing novel geometry for channels, an external magnetic field is also employed to separate the target cells from the background cells. In order for the external field to function, the CTCs must first be labeled with antibody-conjugated nanoparticles; the separation process should be then performed. Before the experimental tests, a numerical study was done to determine the optimum parameters; the angular velocity and magnetization investigations showed that 2000 rpm and 868,000 (kA/m) are the optimum conditions for the designed device to reach the efficiency of 100% for both White Blood Cells (WBCs) and CTCs. These results indicate that the passive region of the channels primarily contributes to the focusing of the target cells, and showed that the focusing effect is more pronounced in the expansion-contraction geometry compared to the zigzag geometry. Additionally, the results proved that curved channel geometries performed better than straight ones in terms of separation efficiency. However, if the separation relies solely on channel geometry, the majority of cells would be directed towards the non-target chamber, leading to suboptimal results. This is due to the direction of the forces acting on the cells. However, including an external magnetic field improves the direction of the net force and enhances the separation efficiency. Finally, the numerical and experimental results of the study were compared, and the curved expansion-contraction channel is introduced as the best geometry having 100% and similar to 92% CTC separation efficiency, respectively.
引用
收藏
页数:13
相关论文
共 38 条
[1]  
A.C. Society, 2022, AM CANC SOC
[2]   Particle/cell separation on microfluidic platforms based on centrifugation effect: a review [J].
Al-Faqheri, Wisam ;
Thio, Tzer Hwai Gilbert ;
Qasaimeh, Mohammad Ameen ;
Dietzel, Andreas ;
Madou, Marc ;
Al-Halhouli, Ala'aldeen .
MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (06)
[3]   A new simple and fast thermally-solvent assisted method to bond PMMA-PMMA in micro-fluidics devices [J].
Bamshad, Arshya ;
Nikfarjam, Alireza ;
Khaleghi, Hossein .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2016, 26 (06)
[4]   Technologies for circulating tumor cell separation from whole blood [J].
Banko, Petra ;
Lee, Sun Young ;
Nagygyorgy, Viola ;
Zrinyi, Miklos ;
Chae, Chang Hoon ;
Cho, Dong Hyu ;
Telekes, Andras .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2019, 12 (1)
[5]  
Besanjideh M., 2021, PHYS FLUIDS, P33
[6]   Microfluidics for cell separation [J].
Bhagat, Ali Asgar S. ;
Bow, Hansen ;
Hou, Han Wei ;
Tan, Swee Jin ;
Han, Jongyoon ;
Lim, Chwee Teck .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (10) :999-1014
[7]   Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis [J].
Derakhshan, Reza ;
Bozorgzadeh, Ali ;
Ramiar, Abas .
JOURNAL OF CHROMATOGRAPHY A, 2023, 1702
[8]   COMPONENTS OF CONTINUUM RADIATION IN AN INDUCTIVELY-COUPLED PLASMA [J].
DEREGT, JM ;
VANDIJK, J ;
VANDERMULLEN, JAM ;
SCHRAM, DC .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (01) :40-46
[9]  
Dezhkam R., 2023, J IND ENG CHEM
[10]   Continuous Submicron Particle Separation Via Vortex-Enhanced Ionic Concentration Polarization: A Numerical Investigation [J].
Dezhkam, Rasool ;
Amiri, Hoseyn A. ;
Collins, David J. ;
Miansari, Morteza .
MICROMACHINES, 2022, 13 (12)