Feature Alignment in Anchor-Free Object Detection

被引:8
|
作者
Gao, Feng [1 ,2 ]
Cai, Yeyun [1 ,2 ,3 ]
Deng, Fang [1 ,2 ]
Yu, Chengpu [1 ,2 ]
Chen, Jie [1 ,4 ]
机构
[1] Beijing Inst Technol, Natl Key Lab Autonomous Intelligent Unmanned Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Huawei Technol Co Ltd, Beijing 100081, Peoples R China
[4] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; anchor-free models; feature alignment;
D O I
10.1109/TCSVT.2023.3241993
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Most anchor-free methods perform object detection using dense recommendation, which assumes that one point can simultaneously conduct accurate category prediction and regression estimation. However, due to different task drivers, valid features for classification and regression may locate at distinct areas in the training phase. This problem is called feature misalignment. To solve it, we propose a new feature alignment method based on anchor-free object detector. Firstly, a global receptive field adaptor (G-RFA) is designed by incorporating the feature pyramid networks (FPN) with the global attention mechanism, and forward features are further fine-tuned with a deformable-subnet (De-Subnet) to remove the influence of redundant contextual information. Then, a new feature filter strategy with a misalignment score is proposed to guide the network to focus on sampling points with aligned features. In addition, we establish mutually independent multi-layer quality distributions to model the priori information of an object on different FPN levels. Equipped with our method, the classification and regression features are aligned, and the generated foreground weight map converges to the centers of classification and regression heatmaps. Experimental results show that without bells and whistles, our method achieves 49.3% AP on MS COCO test-dev under the default 2x training schedule, outperforming related methods. Besides, experiments on PASCAL VOC demonstrate the generalization ability of our method. Code is available at https://github.com/GFENGG/featurealign.
引用
收藏
页码:3799 / 3810
页数:12
相关论文
共 50 条
  • [31] Anchor-Free Feature Aggregation Network for Instrument Detection in Endoscopic Surgery
    Ding, Guanzhi
    Zhao, Xiushun
    Peng, Cai
    Li, Li
    Guo, Jing
    Li, Depei
    Jiang, Xiaobing
    IEEE ACCESS, 2023, 11 : 29464 - 29473
  • [32] A fully convolutional anchor-free object detector
    Taoshan Zhang
    Zheng Li
    Zhikuan Sun
    Lin Zhu
    The Visual Computer, 2023, 39 : 569 - 580
  • [33] A fully convolutional anchor-free object detector
    Zhang, Taoshan
    Li, Zheng
    Sun, Zhikuan
    Zhu, Lin
    VISUAL COMPUTER, 2023, 39 (02): : 569 - 580
  • [34] Multimodal feature adaptive fusion for anchor-free 3D object detectionMultimodal feature adaptive fusion for anchor-free 3D object detectionYanli Wu et al.
    Yanli Wu
    Junyin Wang
    Hui Li
    Xiaoxue Ai
    Xiao Li
    Applied Intelligence, 2025, 55 (7)
  • [35] Integrally Mixing Pyramid Representations for Anchor-Free Object Detection in Aerial Imagery
    Zhang, Cong
    Xiao, Jun
    Yang, Cuixin
    Zhou, Jingchun
    Lam, Kin-Man
    Wang, Qi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [36] Anchor-free object detection network based on non-local operation
    Wu, Peng
    Wang, Chen
    Wang, Junxiao
    Wang, Yuanzhi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (19) : 56249 - 56259
  • [37] DSLA: Dynamic smooth label assignment for efficient anchor-free object detection
    Su, Hu
    He, Yonghao
    Jiang, Rui
    Zhang, Jiabin
    Zou, Wei
    Fan, Bin
    PATTERN RECOGNITION, 2022, 131
  • [38] Predictive Distillation Method of Anchor-Free Object Detection Model for Continual Learning
    Gang, Sumyung
    Chung, Daewon
    Lee, Joonjae
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [39] Anchor-Free Object Detection with Scale-Aware Networks for Autonomous Driving
    Piao, Zhengquan
    Wang, Junbo
    Tang, Linbo
    Zhao, Baojun
    Zhou, Shichao
    ELECTRONICS, 2022, 11 (20)
  • [40] Lights as Points: Learning to Look at Vehicle Substructures With Anchor-Free Object Detection
    Keskar, Maitrayee
    Greer, Ross
    Gopalkrishnan, Akshay
    Deo, Nachiket
    Trivedi, Mohan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (05): : 4236 - 4243