Improvement of variables interpretability in kernel PCA

被引:4
作者
Briscik, Mitja [1 ]
Dillies, Marie-Agnes [2 ]
Dejean, Sebastien [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UPS, CNRS,UMR5219, F-31062 Toulouse 9, France
[2] Univ Paris Cite, Inst Pasteur, Bioinformat & Biostat Hub, F-75015 Paris, France
关键词
Kernel PCA; Relevant variables; Unsupervised learning; Kernel methods; RACGAP1; EXPRESSION; MAJOR DETERMINANT; ASPM GENE; ADAM10; CANCER; IDENTIFICATION; METASTASIS; BIOMARKER; TARGET; CCNB1;
D O I
10.1186/s12859-023-05404-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundKernel methods have been proven to be a powerful tool for the integration and analysis of high-throughput technologies generated data. Kernels offer a nonlinear version of any linear algorithm solely based on dot products. The kernelized version of principal component analysis is a valid nonlinear alternative to tackle the nonlinearity of biological sample spaces. This paper proposes a novel methodology to obtain a data-driven feature importance based on the kernel PCA representation of the data.ResultsThe proposed method, kernel PCA Interpretable Gradient (KPCA-IG), provides a data-driven feature importance that is computationally fast and based solely on linear algebra calculations. It has been compared with existing methods on three benchmark datasets. The accuracy obtained using KPCA-IG selected features is equal to or greater than the other methods' average. Also, the computational complexity required demonstrates the high efficiency of the method. An exhaustive literature search has been conducted on the selected genes from a publicly available Hepatocellular carcinoma dataset to validate the retained features from a biological point of view. The results once again remark on the appropriateness of the computed ranking.ConclusionsThe black-box nature of kernel PCA needs new methods to interpret the original features. Our proposed methodology KPCA-IG proved to be a valid alternative to select influential variables in high-dimensional high-throughput datasets, potentially unravelling new biological and medical biomarkers.
引用
收藏
页数:21
相关论文
共 78 条
[1]  
Abid A, 2019, Arxiv, DOI [arXiv:1901.09346, 10.48550/ARXIV.1901.09346]
[2]  
Ancona M, 2018, Arxiv, DOI [arXiv:1711.06104, DOI 10.48550/ARXIV.1711.06104]
[3]  
Ancona Marco, 2019, LNCS (LNAI), P169, DOI [DOI 10.1007/978-3-030-28954-6_9, DOI 10.1007/978-3-030-28954-69, 10.1007/978-3-030-28954-6_9]
[4]  
[Anonymous], 2005, Advances in Neural Information Processing Systems
[5]   Kernel independent component analysis [J].
Bach, FR ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (01) :1-48
[6]   ASPM is a major determinant of cerebral cortical size [J].
Bond, J ;
Roberts, E ;
Mochida, GH ;
Hampshire, DJ ;
Scott, S ;
Askham, JM ;
Springell, K ;
Mahadevan, M ;
Crow, YJ ;
Markham, AF ;
Walsh, CA ;
Woods, CG .
NATURE GENETICS, 2002, 32 (02) :316-320
[7]   clValid: An R package for cluster validation [J].
Brock, Guy ;
Datta, Susmita ;
Pihur, Vasyl ;
Datta, Somnath .
JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (04) :1-22
[8]   Feature selection for kernel methods in systems biology [J].
Brouard, Celine ;
Mariette, Jerome ;
Flamary, Remi ;
Vialaneix, Nathalie .
NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (01)
[9]  
Cai D, 2010, P 16 ACM SIGKDD INT
[10]   FOXM1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1 [J].
Chai, Na ;
Xie, Hua-hong ;
Yin, Ji-peng ;
Sa, Ke-di ;
Guo, Yi ;
Wang, Meng ;
Liu, Jun ;
Zhang, Xiao-fang ;
Zhang, Xiang ;
Yin, Hong ;
Nie, Yong-zhan ;
Wu, Kai-chun ;
Yang, An-gang ;
Zhang, Rui .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 500 (04) :924-929