Blow-up of positive solutions for the semilinear heat equation with a potential

被引:4
作者
Zhang, Kaiqiang [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Heat equation; Fujita exponent; blow-up rate; blow-up set; LARGE TIME BEHAVIOR; PARABOLIC EQUATIONS; GLOBAL EXISTENCE; CAUCHY-PROBLEM; NONEXISTENCE; STABILITY; THEOREMS;
D O I
10.1080/00036811.2023.2215801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonnegative solutions of the equation u(t) - Delta u + V(x)u = vertical bar u vertical bar(p-1)u in R-n, t>0, under the assumption that V(x) is an element of C-1(R-n) satisfies vertical bar V(x)vertical bar <= c. We establish a new blow-up criterion that depends only on V(x) and p. In addition, as the supreme of V(x) decreases, we find an interesting phenomenon that the Fujita exponent goes to infinity, in the sense that every nonnegative solution blows up in finite time whenever p>1. Furthermore, we obtain the blow-up rate estimate in the subcritical case. In the end, under the assumption of V(x) >= 0, we give the refined blow-up estimate of the blow-up solutions near the blow-up time.
引用
收藏
页码:954 / 969
页数:16
相关论文
共 25 条
[1]   Liouville theorems and blow up behaviour in semilinear reaction diffusion systems [J].
Andreucci, D ;
Herrero, MA ;
Velazquez, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01) :1-53
[2]   Some blow-up problems for a semilinear parabolic equation with a potential [J].
Cheng, Ting ;
Zheng, Gao-Feng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (04) :766-802
[3]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[4]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[5]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[6]   A BOUND FOR GLOBAL-SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (03) :415-421
[7]   Blow up rate for semilinear heat equations with subcritical nonlinearity [J].
Giga, Y ;
Matsui, SY ;
Sasayama, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :483-514
[8]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[9]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[10]   The Blow-Up Rate for a Non-Scaling Invariant Semilinear Heat Equation [J].
Hamza, Mohamed Ali ;
Zaag, Hatem .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 244 (01) :87-125