(k,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\psi )$$\end{document}-Hilfer impulsive variational problem

被引:0
作者
Ledesma, Cesar E. Torres [1 ]
Nyamoradi, Nemat [2 ]
机构
[1] Univ Nacl Trujillo, Dept Matemat, Av Juan Pablo II S-N, Trujillo, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
(k; <mml; math><mml; mi>psi</mml; mi></mml; math>; documentclass[12pt]{minimal}; usepackage{amsmath}; usepackage{wasysym}; usepackage{amsfonts}; usepackage{amssymb}; usepackage{amsbsy}; usepackage{mathrsfs}; usepackage{upgreek}; setlength{; oddsidemargin}{-69pt}; begin{document}$$; psi $$; end{document})-fractional operators; href="13398_2022_1377_Article_IEq9; >)-fractional space of Sobolev type; Variational method; Impulsive problem; BOUNDARY-VALUE-PROBLEMS; PREDATOR-PREY MODEL; EXISTENCE; DIFFUSION; EQUATIONS;
D O I
10.1007/s13398-022-01377-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a fractional impulsive differential equation with the (k,psi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\psi )$$\end{document}-Hilfer fractional derivative operator. Some properties of the (k,psi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, \psi )$$\end{document}-Riemann-Liouville fractional integrals and derivatives and (k,psi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k, \psi )$$\end{document}-Hilfer fractional derivative are obtained. Also, we justify some fundamental properties in the variational structure to fractional impulsive differential equations with the (k,psi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,\psi )$$\end{document}-Hilfer fractional derivative operator. Finally, we study the existence of weak solutions through new linking theorem due to Schechter for the proposed problem. Finally, examples are provided to show the utilization of primary outcomes.
引用
收藏
页数:34
相关论文
共 63 条
[1]  
Agrawal O., 2004, FRACTIONAL DERIVATIV
[2]   EXISTENCE OF SOLUTIONS FOR IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF FRACTIONAL ORDER [J].
Ahmad, Bashir ;
Nieto, Juan J. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03) :981-993
[3]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[4]  
Anguraj A., 2010, Acta Math. Hungar, V13, P281
[5]  
[Anonymous], 1995, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises
[6]  
[Anonymous], 1997, Minimax Theorems
[7]   Existence of solutions to boundary value problem for impulsive fractional differential equations [J].
Bonanno, Gabriele ;
Rodriguez-Lopez, Rosana ;
Tersian, Stepan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) :717-744
[8]   On the structure of the critical set of non-differentiable functions with a weak compactness condition [J].
Bonanno, Gabriele ;
Marano, Salvatore A. .
APPLICABLE ANALYSIS, 2010, 89 (01) :1-10
[9]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[10]   Impulsive fractional differential equations with nonlinear boundary conditions [J].
Cao, Jianxin ;
Chen, Haibo .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :303-311