The Cauchy problem for the nonisentropic compressible MHD fluids: Optimal time-decay rates

被引:1
作者
Huang, Wenting [1 ,4 ]
Fu, Shengbin [2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
[2] Fuzhou Univ, Sch Math & Stat, Fuzhou, Peoples R China
[3] Ctr Appl Math Fujian Prov, Fuzhou, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Fourier theory; global well-posedness; nonisentropic MHD fluids; optimal time-decay rates; NAVIER-STOKES EQUATIONS; RAYLEIGH-TAYLOR INSTABILITY; GLOBAL EXISTENCE; CONVERGENCE-RATES; WEAK SOLUTIONS; MAGNETOHYDRODYNAMIC EQUATIONS; ASYMPTOTIC-BEHAVIOR; SMOOTH SOLUTIONS; MOTION;
D O I
10.1002/mma.9082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the time-decay rates of the strong solutions of the three-dimensional nonisentropic compressible magnetohydrodynamic (MHD) system. First, motivated by Pu and Guo's result [Z. Angew. Math. Phys. 64 (2013) 519-538], we establish the existence result of a unique local-in-time strong solution for the MHD system. Then, we derive a priori estimates and use the continuity argument to obtain the global-in-time solution, where the initial perturbation is small in H-2-norm. Finally, based on Fourier theory and the idea of cancelation of a low-medium frequent part as in [Sci. China Math. 65 (2022) 1199-1228], we get the optimal time-decay rates (including highest-order derivatives) of strong solutions for nonisentropic MHD fluids when the boundedness of L-1-norm of the initial perturbation is required. Our result is the first one concerning with the optimal decay estimates of the highest-order derivatives of the nonisentropic MHD system.
引用
收藏
页码:9708 / 9735
页数:28
相关论文
共 48 条
[1]   DECAY ESTIMATES FOR ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN BOUNDED DOMAIN [J].
Abdallah, Mohamed Ahmed ;
Fei, Jiang ;
Zhong, Tan .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (06) :2211-2220
[2]  
Adams R. A., 1975, Sobolev spaces, V65
[3]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[4]  
Chen Q, 2020, ELECTRON J DIFFER EQ
[5]   Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations [J].
Chen, Qing ;
Tan, Zhong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4438-4451
[6]   Global Weak Solutions to the Magnetohydrodynamic and Vlasov Equations [J].
Chen, Robin Ming ;
Hu, Jilong ;
Wang, Dehua .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (02) :343-360
[7]   GLOBAL EXISTENCE AND TIME-DECAY ESTIMATES OF SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES-SMOLUCHOWSKI EQUATIONS [J].
Chen, Yingshan ;
Ding, Shijin ;
Wang, Wenjun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) :5287-5307
[8]   DECAY-ESTIMATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN UNBOUNDED-DOMAINS [J].
DECKELNICK, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :115-130
[9]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[10]   Optimal decay rates of classical solutions for the full compressible MHD equations [J].
Gao, Jincheng ;
Tao, Qiang ;
Yao, Zheng-an .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (02)