Fractional oscillon equations: continuity properties of attractors with respect to order of the equations

被引:2
作者
Bezerra, Flank D. M. [1 ]
Figueroa-Lopez, Rodiak N. [2 ]
Nascimento, Marcelo J. D. [2 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
oscillon equation; fractional equations; approximations problems; pullback attractor; continuity; PULLBACK;
D O I
10.1088/1361-6544/acad5c
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with convergence properties of pullback attractors with respect to order of the fractional oscillon equations, that is, we study the fast growing dissipative semilinear oscillon equations as a limiting problem of semilinear equations with the main part being the fractional powers of the oscillon operators. We show that the family of pullback attractors associated with this approximations problems behave upper semicontinuously and we also show a result of continuity of the pullback attractors with respect to order of the fractional oscillon equations in each point of a dense residual subset of the interval [0,1]
引用
收藏
页码:1218 / 1244
页数:27
相关论文
共 14 条
[1]  
Amann H., 1995, Linear and Quasilinear Parabolic Problems. Vol. I
[2]  
[Anonymous], 1969, Foundations of Modern Analysis
[3]  
[Anonymous], 2012, Attractors for infinite-dimensional non-autonomous dynamical systems
[4]   Parabolic approximation of damped wave equations via fractional powers: Fast growing nonlinearities and continuity of the dynamics [J].
Bezerra, F. D. M. ;
Carvalho, A. N. ;
Cholewa, J. W. ;
Nascimento, M. J. D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) :377-405
[5]   FRACTIONAL OSCILLON EQUATIONS; SOLVABILITY AND CONNECTION WITH CLASSICAL OSCILLON EQUATIONS [J].
Bezerra, Flank D. M. ;
Figueroa-Lopez, Rodiak N. ;
Nascimento, Marcelo J. D. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (06) :2257-2277
[6]  
Brezis H, 2011, UNIVERSITEXT, P1
[7]   On the continuity of pullback attractors for evolution processes [J].
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Robinson, James C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1812-1824
[8]   Attractors for processes on time-dependent spaces. Applications to wave equations [J].
Conti, Monica ;
Pata, Vittorino ;
Temam, Roger .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) :1254-1277
[9]  
Di Plinio F., 2012, Bollettino dellUnione Matematica Italiana, V5, P19
[10]   TIME-DEPENDENT ATTRACTOR FOR THE OSCILLON EQUATION [J].
Di Plinio, Francesco ;
Duane, Gregory S. ;
Temam, Roger .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :141-167