Perturbations of spectra and property (R) for upper triangular operator matrices

被引:5
作者
Yang, Lili [1 ]
Cao, Xiaohong [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
关键词
Property (R); Upper triangular operator matrix; Spectrum; WEYLS THEOREM;
D O I
10.1016/j.jmaa.2022.126797
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H and K be two complex infinite dimensional separable Hilbert spaces. For T is an element of B(H), T is said to satisfy property (R) if the complement in the approximate point spectrum of the Browder essential approximate point spectrum coincides with the isolated eigenvalues of finite multiplicity. In this paper, we mainly give the sufficient and necessary conditions for the 2 x 2 upper triangular operator matrices such that they satisfy property (R) using the features of the elements on the diagonal. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 11 条
[1]   Fredholm and Local Spectral Theory II: With Application to Weyl-Type Theorems [J].
Aiena, P. .
FREDHOLM AND LOCAL SPECTRAL THEORY II: WITH APPLICATION TO WEYL-TYPE THEOREMS, 2018, 2235 :1-544
[2]   Property (R) under Perturbations [J].
Aiena, Pietro ;
Aponte, Elvis ;
Guillen, Jesus R. ;
Pena, Pedro .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) :367-382
[3]   Property (R) for Bounded Linear Operators [J].
Aiena, Pietro ;
Guillen, Jesus R. ;
Pena, Pedro .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (04) :491-508
[4]   Weyl type theorems of 2 x 2 upper triangular operator matrices [J].
Bai, Qingmei ;
Huang, Junjie ;
Chen, Alatancang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) :1065-1076
[5]   Semi-fredholm spectrum and Weyl's theorem for operator matrices [J].
Cao, XH ;
Guo, MZ ;
Meng, B .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (01) :169-178
[6]   Drazin invertibility of upper triangular operator matrices [J].
Cvetkovic-Ilic, D. S. ;
Pavlovic, V. .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02) :260-267
[7]   COMPLETIONS OF UPPER-TRIANGULAR MATRICES TO LEFT-FREDHOLM OPERATORS WITH NON-POSITIVE INDEX [J].
Cvetkovic-Ilic, Dragana S. .
JOURNAL OF OPERATOR THEORY, 2016, 76 (01) :93-106
[8]   PERTURBATION OF SPECTRUMS OF 2 X-2 OPERATOR MATRICES [J].
DU, HK ;
PAN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (03) :761-766
[9]   α-Weyl's theorem for operator matrices [J].
Han, YM ;
Djordjevic, SV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (03) :715-722
[10]  
Heuser H., 1982, Functinal Analysis