Plant-soil feedbacks in Hydrocotyle vulgaris: Genotypic differences and relations to functional traits

被引:6
|
作者
Begum, Ghazala [1 ,2 ]
Gao, Jun-Qin [1 ]
Xue, Wei [2 ]
Yu, Fei-Hai [1 ,2 ]
机构
[1] Beijing Forestry Univ, Sch Ecol & Nat Conservat, Beijing 100083, Peoples R China
[2] Taizhou Univ, Inst Wetland Ecol & Clone Ecol, Taizhou 318000, Peoples R China
基金
中国国家自然科学基金;
关键词
Clonal plant; Conspecific plant -soil feedbacks; Intraspecific plant -soil feedback; Internodes; Genotypes; Plant height; Specific leaf area; RESPONSES; POPULATION; COMMUNITY; DIVERSITY; PREDICTS; GROWTH; PRODUCTIVITY; ABUNDANCE; DYNAMICS; RARITY;
D O I
10.1016/j.ecolind.2022.109766
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Plant-soil feedbacks (PSFs) may vary among genotypes within the same species and may also be predicted by plant functional traits. So far, however, it is still unclear whether PSFs can be correlated with plant functional traits across genotypes of the same species. We conducted a two-phase PSF experiment with a clonal plant Hydrocotyle vulgaris. In the conditioning phase, we planted 12 genotypes of H. vulgaris separately in the soil. In the feedback phase, all these genotypes of H. vulgaris were grown again separately in each of the conditioned soil that was trained either by the same genotype (home soil) or by the other 11 genotypes (non-home soil). Most of the genotypes showed negative PSFs, as indicated by significant lower biomass and number of ramets in the home soil than in the non-home soil. However, there were also genotypes showing neutral PSFs as neither biomass nor number of ramets differed significantly between the home and the non-home soil or positive PSFs as biomass and number of ramets were higher in the home than in the non-home soil. In addition, we found a significant positive relationship between the PSF strength with lamina area, specific lamina area, petiole length, specific petiole length and internode length, but a negative relationship between the PSF strength and specific internode length. We conclude that the PSFs can vary among genotypes within the same species and negative PSFs are more common compared to positive PSFs. The results also highlight the role of plant functional traits in predicting PSFs across genotypes.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Are there evolutionary consequences of plant-soil feedbacks along soil gradients?
    Schweitzer, Jennifer A.
    Juric, Ivan
    van de Voorde, Tess F. J.
    Clay, Keith
    van der Putten, Wim H.
    Bailey, Joseph K.
    FUNCTIONAL ECOLOGY, 2014, 28 (01) : 55 - 64
  • [22] Plant-soil feedbacks as drivers of succession: evidence from remnant and restored tallgrass prairies
    Bauer, Jonathan T.
    Mack, Keenan M. L.
    Bever, James D.
    ECOSPHERE, 2015, 6 (09):
  • [23] Spatial heterogeneity in plant-soil feedbacks alters competitive interactions between two grassland plant species
    Xue, Wei
    Berendse, Frank
    Bezemer, T. Martijn
    FUNCTIONAL ECOLOGY, 2018, 32 (08) : 2085 - 2094
  • [24] Deciphering the drivers of plant-soil feedbacks and their context-dependence: A meta-analysis
    Cheng, Cai
    Gundale, Michael J.
    Li, Bo
    Wu, Jihua
    PLANT AND SOIL, 2024, : 379 - 393
  • [25] Consequences of plant-soil feedbacks in invasion
    Suding, Katharine N.
    Harpole, William Stanley
    Fukami, Tadashi
    Kulmatiski, Andrew
    MacDougall, Andrew S.
    Stein, Claudia
    van der Putten, Wim H.
    JOURNAL OF ECOLOGY, 2013, 101 (02) : 298 - 308
  • [26] Globally, plant-soil feedbacks are weak predictors of plant abundance
    Reinhart, Kurt O.
    Bauer, Jonathan T.
    McCarthy-Neumann, Sarah
    MacDougall, Andrew S.
    Hierro, Jose L.
    Chiuffo, Mariana C.
    Mangan, Scott A.
    Heinze, Johannes
    Bergmann, Joana
    Joshi, Jasmin
    Duncan, Richard P.
    Diez, Jeff M.
    Kardol, Paul
    Rutten, Gemma
    Fischer, Markus
    van der Putten, Wim H.
    Bezemer, Thiemo Martijn
    Klironomos, John
    ECOLOGY AND EVOLUTION, 2021, 11 (04): : 1756 - 1768
  • [27] Taking plant-soil feedbacks to the field in a temperate grassland
    De Long, Jonathan R.
    Heinen, Robin
    Steinauer, Katja
    Hannula, S. Emilia
    Huberty, Martine
    Jongen, Renske
    Vandenbrande, Simon
    Wang, Minggang
    Zhu, Feng
    Bezemer, T. Martijn
    BASIC AND APPLIED ECOLOGY, 2019, 40 : 30 - 42
  • [28] Plant-soil feedbacks: the past, the present and future challenges
    van der Putten, Wim H.
    Bardgett, Richard D.
    Bever, James D.
    Bezemer, T. Martijn
    Casper, Brenda B.
    Fukami, Tadashi
    Kardol, Paul
    Klironomos, John N.
    Kulmatiski, Andrew
    Schweitzer, Jennifer A.
    Suding, Katherine N.
    Van de Voorde, Tess F. J.
    Wardle, David A.
    JOURNAL OF ECOLOGY, 2013, 101 (02) : 265 - 276
  • [29] Greenhouse- and Field-Measured Plant-Soil Feedbacks Are Not Correlated
    Forero, Leslie E.
    Grenzerl, Josephine
    Heinze, Johannes
    Schittko, Conrad
    Kulmatiski, Andrew
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2019, 7
  • [30] Synergistic and antagonistic effects of mixing monospecific soils on plant-soil feedbacks
    Ma, Hai-kun
    Pineda, Ana
    van der Wurff, Andre W. G.
    Bezemer, T. Martijn
    PLANT AND SOIL, 2018, 429 (1-2) : 271 - 279