Sufficient spectral conditions for graphs being k-edge-Hamiltonian or k-Hamiltonian

被引:1
作者
Li, Yongtao [1 ]
Peng, Yuejian [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Hamiltonian cycle; extremal graph theory; stability; LARGEST EIGENVALUE; SHARP UPPER; RADIUS; THEOREM; ANALOGS; ERDOS;
D O I
10.1080/03081087.2022.2093321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is k-edge-Hamiltonian if any collection of vertex-disjoint paths with at most k edges altogether belong to a Hamiltonian cycle in G. A graph G is k-Hamiltonian if for all S subset of V(G) with vertical bar S vertical bar <= k, the subgraph induced by V(G) \ S has a Hamiltonian cycle. These two concepts are classical extensions of the usual Hamiltonian graphs. In this paper, we present some spectral sufficient conditions for a graph to be k-edge-Hamiltonian and k-Hamiltonian in terms of the adjacency spectral radius as well as the signless Laplacian spectral radius. Our results could be viewed as slight extensions of the recent theorems proved by Li and Ning [Linear Multilinear Algebra. 2016;64:2252-2269], Nikiforov [Czechoslovak Math J. 2016;66:925-940] and Li et al. [Linear Multilinear Algebra. 2018;66:2011-2023]. Moreover, we shall prove a stability result for graphs being k-Hamiltonian, which could be regarded as a complement of two recent results of Furedi et al. [Discrete Math. 2017;340:2688-2690] and [Discrete Math. 2019;342:1919-1923].
引用
收藏
页码:2093 / 2113
页数:21
相关论文
共 37 条
[1]  
Bapat R., 2014, Graphs and Matrices, V2nd
[2]  
Bondy J. A., 1976, Graph theory with applications
[3]   METHOD IN GRAPH THEORY [J].
BONDY, JA ;
CHVATAL, V .
DISCRETE MATHEMATICS, 1976, 15 (02) :111-135
[4]   VARIATIONS ON HAMILTONIAN THEME [J].
BONDY, JA .
CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01) :57-&
[5]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[6]  
Chartrand G., 1970, J. Combin. Theory, Ser. B., V9, P308
[7]  
Chvatal V., 1972, Journal of Combinatorial Theory, Series B, V12, P163, DOI DOI 10.1016/0095-8956(72)90020-2
[8]   On a conjecture of V. Nikiforov [J].
Csikvari, Peter .
DISCRETE MATHEMATICS, 2009, 309 (13) :4522-4526
[9]  
Dirac G.A., 1952, P LONDON MATH SOC 3, Vs3-2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[10]   ON THREE CONJECTURES INVOLVING THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS [J].
Feng, Lihua ;
Yu, Guihai .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99) :35-38