Therapeutic application of machine learning in psoriasis: A Prisma systematic review

被引:9
作者
Lunge, Snehal Balvant [1 ]
Shetty, Nandini Sundar [1 ]
Sardesai, Vidyadhar R. [1 ]
Karagaiah, Priyanka [2 ]
Yamauchi, Paul S. [3 ,4 ]
Weinberg, Jeffrey M. [5 ]
Kircik, Leon [5 ]
Giulini, Mario [6 ]
Goldust, Mohamad [7 ]
机构
[1] Bharati Vidyapeeth DTU Med Coll & Hosp, Dept Dermatol Venereol & Leprosy, Pune, Maharashtra, India
[2] Bangalore Med Coll & Res Inst, Dept Dermatol, Bangalore, Karnataka, India
[3] Dermatol Inst & Skin Care Ctr, Santa Monica, CA USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Div Dermatol, Los Angeles, CA USA
[5] Icahn Sch Med Mt Sinai, New York, NY 10029 USA
[6] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Dermatol, Mainz, Germany
[7] Univ Med Ctr Mainz, Dept Dermatol, Mainz, Germany
关键词
artificial intelligence; dermatology; machine learning; psoriasis; SURFACE; VISION; AREA;
D O I
10.1111/jocd.15122
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Dermatology, being a predominantly visual-based diagnostic field, has found itself to be at the epitome of artificial intelligence (AI)-based advances. Machine learning (ML), a subset of AI, goes a step further by recognizing patterns from data and teaches machines to automatically learn tasks. Although artificial intelligence in dermatology is mostly developed in melanoma and skin cancer diagnosis, advances in AI and ML have gone far ahead and found its application in ulcer assessment, psoriasis, atopic dermatitis, onychomycosis, etc. This article is focused on the application of ML in the therapeutic aspect of psoriasis.
引用
收藏
页码:378 / 382
页数:5
相关论文
共 50 条
  • [21] A systematic review of the application of machine learning in the detection and classification of transposable elements
    Orozco-Arias, Simon
    Isaza, Gustavo
    Guyot, Romain
    Tabares-Soto, Reinel
    PEERJ, 2019, 7
  • [22] Application of machine learning in measurement of ageing and geriatric diseases: a systematic review
    Das, Ayushi
    Dhillon, Preeti
    BMC GERIATRICS, 2023, 23 (01)
  • [23] A systematic review of the application of machine-learning algorithms in multiple sclerosis
    Vazquez-Marrufo, M.
    Sarrias-Arrabal, E.
    Garcia-Torres, M.
    Martin-Clemente, R.
    Izquierdo, G.
    NEUROLOGIA, 2023, 38 (08): : 577 - 590
  • [24] Application of machine learning in measurement of ageing and geriatric diseases: a systematic review
    Ayushi Das
    Preeti Dhillon
    BMC Geriatrics, 23
  • [25] Application of Machine Learning Methods in Mental Health Detection: A Systematic Review
    Abd Rahman, Rohizah
    Omar, Khairuddin
    Mohd Noah, Shahrul Azman
    Danuri, Mohd Shahrul Nizam Mohd
    Al-Garadi, Mohammed Ali
    IEEE ACCESS, 2020, 8 : 183952 - 183964
  • [26] Application of Machine Learning to Stomatology: A Comprehensive Review
    Sun, Mao-Lei
    Liu, Yun
    Liu, Guomin
    Cui, Dan
    Heidari, Ali Asghar
    Jia, Wen-Yuan
    Ji, Xuan
    Chen, Huiling
    Luo, Yungang
    IEEE ACCESS, 2020, 8 : 184360 - 184374
  • [27] Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: a systematic review
    Barrera, Francisco J.
    Brown, Ethan D. L.
    Rojo, Amanda
    Obeso, Javier
    Plata, Hiram
    Lincango, Eddy P.
    Terry, Nancy
    Rodriguez-Gutierrez, Rene
    Hall, Janet E.
    Shekhar, Skand
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [28] Application of machine learning and deep learning techniques on reverse vaccinology – a systematic literature review
    Alashwal, Hany
    Kochunni, Nishi Palakkal
    Hayawi, Kadhim
    Soft Computing, 2025, 29 (01) : 391 - 403
  • [29] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [30] Systematic reviews of machine learning in healthcare: a literature review
    Kolasa, Katarzyna
    Admassu, Bisrat
    Holownia-Voloskova, Malwina
    Kedzior, Katarzyna J.
    Poirrier, Jean-Etienne
    Perni, Stefano
    EXPERT REVIEW OF PHARMACOECONOMICS & OUTCOMES RESEARCH, 2024, 24 (01) : 63 - 115