Therapeutic application of machine learning in psoriasis: A Prisma systematic review

被引:10
作者
Lunge, Snehal Balvant [1 ]
Shetty, Nandini Sundar [1 ]
Sardesai, Vidyadhar R. [1 ]
Karagaiah, Priyanka [2 ]
Yamauchi, Paul S. [3 ,4 ]
Weinberg, Jeffrey M. [5 ]
Kircik, Leon [5 ]
Giulini, Mario [6 ]
Goldust, Mohamad [7 ]
机构
[1] Bharati Vidyapeeth DTU Med Coll & Hosp, Dept Dermatol Venereol & Leprosy, Pune, Maharashtra, India
[2] Bangalore Med Coll & Res Inst, Dept Dermatol, Bangalore, Karnataka, India
[3] Dermatol Inst & Skin Care Ctr, Santa Monica, CA USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Div Dermatol, Los Angeles, CA USA
[5] Icahn Sch Med Mt Sinai, New York, NY 10029 USA
[6] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Dept Dermatol, Mainz, Germany
[7] Univ Med Ctr Mainz, Dept Dermatol, Mainz, Germany
关键词
artificial intelligence; dermatology; machine learning; psoriasis; SURFACE; VISION; AREA;
D O I
10.1111/jocd.15122
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Dermatology, being a predominantly visual-based diagnostic field, has found itself to be at the epitome of artificial intelligence (AI)-based advances. Machine learning (ML), a subset of AI, goes a step further by recognizing patterns from data and teaches machines to automatically learn tasks. Although artificial intelligence in dermatology is mostly developed in melanoma and skin cancer diagnosis, advances in AI and ML have gone far ahead and found its application in ulcer assessment, psoriasis, atopic dermatitis, onychomycosis, etc. This article is focused on the application of ML in the therapeutic aspect of psoriasis.
引用
收藏
页码:378 / 382
页数:5
相关论文
共 20 条
[1]   Predicting Secukinumab Fast-Responder Profile in Psoriatic Patients: Advanced Application of Artificial-Neural-Networks (ANNs) [J].
Damiani, Giovanni ;
Conic, Rosalynn R. Z. ;
Pigatto, Paolo D. M. ;
Carrera, Carlo G. ;
Franchi, Chiara ;
Cattaneo, Angelo ;
Malagoli, Piergiorgio ;
Uppala, Radhakrishna ;
Linder, Dennis ;
Bragazzi, Nicola L. ;
Grossi, Enzo .
JOURNAL OF DRUGS IN DERMATOLOGY, 2020, 19 (12) :1241-1246
[2]   Swarm intelligence based clustering technique for automated lesion detection and diagnosis of psoriasis [J].
Dash, Manoranjan ;
Londhe, Narendra D. ;
Ghosh, Subhojit ;
Shrivastava, Vimal K. ;
Sonawane, Rajendra S. .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 86
[3]   Psoriasis in India: Prevalence and pattern [J].
Dogra, Sunil ;
Yadav, Savita .
INDIAN JOURNAL OF DERMATOLOGY VENEREOLOGY & LEPROLOGY, 2010, 76 (06) :595-601
[4]   Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: a UK population-based cohort study [J].
Dubreuil, Maureen ;
Rho, Young Hee ;
Man, Ada ;
Zhu, Yanyan ;
Zhang, Yuqing ;
Love, Thorvardur Jon ;
Ogdie, Alexis ;
Gelfand, Joel M. ;
Choi, Hyon K. .
RHEUMATOLOGY, 2014, 53 (02) :346-352
[5]  
Emam S., 2019, PREPRINT
[6]   Artificial Intelligence in Dermatology-Where We Are and the Way to the Future: A Review [J].
Hogarty, Daniel T. ;
Su, John C. ;
Phan, Kevin ;
Attia, Mohamed ;
Hossny, Mohammed ;
Nahavandi, Saeid ;
Lenane, Patricia ;
Moloney, Fergal J. ;
Yazdabadi, Anousha .
AMERICAN JOURNAL OF CLINICAL DERMATOLOGY, 2020, 21 (01) :41-47
[7]   Identification of Skin Lesions by Using Single-Step Multiframe Detector [J].
Hsiao, Yu-Ping ;
Chiu, Chih-Wei ;
Lu, Chih-Wei ;
Nguyen, Hong Thai ;
Tseng, Yu Sheng ;
Hsieh, Shang-Chin ;
Wang, Hsiang-Chen .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (01) :1-8
[8]   Area assessment of psoriasis lesion for PASI scoring [J].
Ihtatho, Dani ;
Fadzil, A. H. Ahmad ;
Affandi, Azura Mohd ;
Hussein, S. H. .
2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, :3446-+
[9]   Smartphone-based multispectral imaging and machine-learning based analysis for discrimination between seborrheic dermatitis and psoriasis on the scalp [J].
Kim, Sewoong ;
Kim, Jihun ;
Hwang, Minjoo ;
Kim, Manjae ;
Jo, Seong Jin ;
Je, Minkyu ;
Jang, Jae Eun ;
Lee, Dong Hun ;
Hwang, Jae Youn .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02) :879-891
[10]   Anti-TNF-α treatment-related pathways and biomarkers revealed by transcriptome analysis in Chinese psoriasis patients [J].
Liu, Lunfei ;
Liu, Wenting ;
Zheng, Yuxin ;
Chen, Jisu ;
Zhou, Jiong ;
Dai, Huatuo ;
Cai, Suiqing ;
Liu, Jianjun ;
Zheng, Min ;
Ren, Yunqing .
BMC SYSTEMS BIOLOGY, 2019, 13