Enhanced design of the quasi-zero stiffness vibration isolator with three pairs of oblique springs: Theory and experiment

被引:21
作者
Zhao, Feng [1 ,2 ,3 ]
Cao, Shuqian [1 ,2 ]
Luo, Quantian [4 ]
Ji, Jinchen [4 ]
机构
[1] Tianjin Univ, Dept Mech, Tianjin 300354, Peoples R China
[2] Tianjin Key Lab Nonlinear Dynam & Control, Tianjin, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Mech & Elect Engn, Henan Key Lab Intelligent Mfg Mech Equipment, Zhengzhou, Peoples R China
[4] Univ Technol Sydney, Sch Mech & Mechatron Engn, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Three pairs of oblique springs; vibration isolation; quasi-zero stiffness; high excitation amplitude; experiments; DEVICE;
D O I
10.1177/10775463221074143
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Quasi-zero stiffness vibration isolators have been extensively studied due to superior passive vibration isolation performance. As the quasi-zero stiffness region of the isolators is generally small, the research on their responses to the excitation with high amplitude is currently quite limited. This paper presents an improved design of the quasi-zero stiffness isolator with three pairs of oblique springs to increase the amplitude of the excitation. Theoretical formulations are derived for stiffness and force, and then the influences of three independent parameters on the quasi-zero stiffness region are studied to obtain optimal design parameters. A prototype is fabricated and tested for displacement excitations with amplitudes of 5 mm, 10 mm, and 15 mm in a frequency range of 1.5-10 Hz. The absolute displacement transmissibility of the enhanced quasi-zero stiffness isolator is theoretically and experimentally compared with that of the corresponding linear isolator and that of the previous isolators with three pairs of oblique springs using the same parameter conditions of the loaded mass, the horizontal length of oblique springs, and the vertical spring. The experimental results show that the enhanced design of the quasi-zero stiffness isolator with three pairs of oblique springs can achieve lower displacement transmissibility and deal with the displacement excitation with higher amplitude.
引用
收藏
页码:2049 / 2063
页数:15
相关论文
共 50 条
  • [41] Design of metastructures with quasi-zero dynamic stiffness for vibration isolation
    Fan, Haigui
    Yang, Lijuan
    Tian, Yuchen
    Wang, Zewu
    COMPOSITE STRUCTURES, 2020, 243
  • [42] A quasi-zero stiffness energy harvesting isolator with triple negative stiffness
    Cai, Xiangyu
    Yang, Tao
    Qin, Weiyang
    Xie, Zhongliang
    ACTA MECHANICA SINICA, 2024, 40 (08)
  • [43] APPLICATION OF DISK SPRINGS FOR MANUFACTURING VIBRATION ISOLATORS WITH QUASI-ZERO STIFFNESS
    Valeev, A. R.
    Zotov, A. N.
    Kharisov, Sh. A.
    CHEMICAL AND PETROLEUM ENGINEERING, 2015, 51 (3-4) : 194 - 200
  • [44] Dynamic analysis of a quasi-zero stiffness vibration isolator in propulsion shaft system
    Li, Xinbin
    Huang, Suhe
    Xu, Yajun
    Liu, Jing
    Liu, Jianyu
    Pan, Guang
    OCEAN ENGINEERING, 2024, 313
  • [45] Resonance Response of a Quasi-zero Stiffness Vibration Isolator Considering a Constant Force
    Chun Cheng
    Shunming Li
    Yong Wang
    Xingxing Jiang
    Journal of Vibration Engineering & Technologies, 2018, 6 : 471 - 481
  • [46] A quasi-zero stiffness vibration isolator based on hybrid bistable composite laminate
    Li H.
    Zhao F.
    Zhou X.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (02): : 354 - 363
  • [47] Dynamic Characteristics of Inerter-based Quasi-zero Stiffness Vibration Isolator
    Wang Y.
    Li H.
    Cheng C.
    Ding H.
    Chen L.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2021, 41 (06): : 1124 - 1131
  • [48] Resonance Response of a Quasi-zero Stiffness Vibration Isolator Considering a Constant Force
    Cheng, Chun
    Li, Shunming
    Wang, Yong
    Jiang, Xingxing
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2018, 6 (06) : 471 - 481
  • [49] Three-magnet-ring quasi-zero stiffness isolator for low-frequency vibration isolation
    Wang, Shang
    Hou, Lei
    Meng, Qingye
    Cui, Gengshuo
    Wang, Xiaodong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2024, 4 (02): : 153 - 170
  • [50] Novel modular quasi-zero stiffness vibration isolator with high linearity and integrated fluid damping
    Zhang, Wei
    Che, Jixing
    Huang, Zhiwei
    Gao, Ruiqi
    Jiang, Wei
    Chen, Xuedong
    Wu, Jiulin
    FRONTIERS OF MECHANICAL ENGINEERING, 2024, 19 (01)