Enhanced design of the quasi-zero stiffness vibration isolator with three pairs of oblique springs: Theory and experiment

被引:21
作者
Zhao, Feng [1 ,2 ,3 ]
Cao, Shuqian [1 ,2 ]
Luo, Quantian [4 ]
Ji, Jinchen [4 ]
机构
[1] Tianjin Univ, Dept Mech, Tianjin 300354, Peoples R China
[2] Tianjin Key Lab Nonlinear Dynam & Control, Tianjin, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Mech & Elect Engn, Henan Key Lab Intelligent Mfg Mech Equipment, Zhengzhou, Peoples R China
[4] Univ Technol Sydney, Sch Mech & Mechatron Engn, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Three pairs of oblique springs; vibration isolation; quasi-zero stiffness; high excitation amplitude; experiments; DEVICE;
D O I
10.1177/10775463221074143
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Quasi-zero stiffness vibration isolators have been extensively studied due to superior passive vibration isolation performance. As the quasi-zero stiffness region of the isolators is generally small, the research on their responses to the excitation with high amplitude is currently quite limited. This paper presents an improved design of the quasi-zero stiffness isolator with three pairs of oblique springs to increase the amplitude of the excitation. Theoretical formulations are derived for stiffness and force, and then the influences of three independent parameters on the quasi-zero stiffness region are studied to obtain optimal design parameters. A prototype is fabricated and tested for displacement excitations with amplitudes of 5 mm, 10 mm, and 15 mm in a frequency range of 1.5-10 Hz. The absolute displacement transmissibility of the enhanced quasi-zero stiffness isolator is theoretically and experimentally compared with that of the corresponding linear isolator and that of the previous isolators with three pairs of oblique springs using the same parameter conditions of the loaded mass, the horizontal length of oblique springs, and the vertical spring. The experimental results show that the enhanced design of the quasi-zero stiffness isolator with three pairs of oblique springs can achieve lower displacement transmissibility and deal with the displacement excitation with higher amplitude.
引用
收藏
页码:2049 / 2063
页数:15
相关论文
共 50 条
  • [1] An innovative quasi-zero stiffness isolator with three pairs of oblique springs
    Zhao, Feng
    Ji, Jinchen
    Ye, Kan
    Luo, Quantian
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 192
  • [2] Design and test of a quasi-zero stiffness isolator with machinable springs
    Yang, Hanwen
    Zhao, Hongzhe
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2024, 88 : 729 - 741
  • [3] Design and Analysis of Electromagnetic Quasi-zero Stiffness Vibration Isolator
    Wang MengTong
    Su Pan
    Liu ShuYong
    Chai Kai
    Wang BoXiang
    Lu Jinfang
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (01) : 153 - 164
  • [4] Design and Analysis of Electromagnetic Quasi-zero Stiffness Vibration Isolator
    Wang MengTong
    Su Pan
    Liu ShuYong
    Chai Kai
    Wang BoXiang
    Lu Jinfang
    Journal of Vibration Engineering & Technologies, 2023, 11 : 153 - 164
  • [5] Increase of quasi-zero stiffness region using two pairs of oblique springs
    Zhao, Feng
    Ji, J. C.
    Ye, Kan
    Luo, Quantian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 144 (144)
  • [6] On the analysis of an actual model of a quasi-zero stiffness vibration isolator
    Cheng, Chun
    Ma, Ran
    NONLINEAR DYNAMICS, 2024, 112 (21) : 18917 - 18929
  • [7] Analysis and optimization of a typical quasi-zero stiffness vibration isolator
    Li, Huan
    Yu, Yang
    Li, Jianchun
    Li, Yancheng
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (03) : 525 - 536
  • [8] A torsion–translational vibration isolator with quasi-zero stiffness
    Qianlong Zhang
    Shuyan Xia
    Daolin Xu
    Zhike Peng
    Nonlinear Dynamics, 2020, 99 : 1467 - 1488
  • [9] Design and Vibration Isolation Investigation of a Load-Adjustable Quasi-Zero Stiffness Isolator
    Zhu, Jun
    Wang, Chenyu
    Chen, Keyan
    Shi, Huanghao
    Wang, Zhengzheng
    Wu, Bin
    Wu, Helong
    Zhang, Han
    Wu, Huaping
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024,
  • [10] Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs
    Guilin Wen
    Junfeng He
    Jie Liu
    Yu Lin
    Nonlinear Dynamics, 2021, 106 : 309 - 321