Positive Solutions for Some Classes of Stationary Kirchhoff Equations

被引:0
作者
Ben Chrouda, Mohamed [1 ]
Hassine, Kods [2 ]
机构
[1] Univ Monastir, Inst Super Informat & Math, Monastir, Tunisia
[2] Univ Sousse, Lab Mathe Modelisat Deterministe & Aleatoire, Sousse, Tunisia
关键词
Kirchhoff-type equations; Liouville-type theorem; Positive solutions; Existence; Uniqueness; HENON EQUATION; NONRADIAL SOLUTIONS; NONLINEARITY;
D O I
10.1007/s40840-023-01600-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate positive solutions of some classes of stationary Kirchhoff equations. The nonexistence, existence and multiplicity of solutions are expressed by means of precise relationships between the parameters of the equations. The solutions, if they exist, are explicitly determined.
引用
收藏
页数:12
相关论文
共 28 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]   Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent [J].
Avdeenkov, Alexander V. ;
Zloshchastiev, Konstantin G. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (19)
[3]  
Badiale M, 2004, ADV NONLINEAR STUD, V4, P453
[4]   GAUSSONS - SOLITONS OF THE LOGARITHMIC SCHRODINGER EQUATION [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
PHYSICA SCRIPTA, 1979, 20 (3-4) :539-544
[5]   ON THE LOGARITHMIC SCHRODINGER EQUATION [J].
D'Avenia, Pietro ;
Montefusco, Eugenio ;
Squassina, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
[6]   Finite Morse index solutions of an elliptic equation with supercritical exponent [J].
Dancer, E. N. ;
Du, Yihong ;
Guo, Zongming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (08) :3281-3310
[7]   Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) :3500-3527
[8]   Nonradial Solutions for the Henon Equation Close to the Threshold [J].
Figueroa, Pablo ;
Neves, Sergio L. N. .
ADVANCED NONLINEAR STUDIES, 2019, 19 (04) :757-770
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]   FINITE ELEMENT METHOD FOR A NONLOCAL PROBLEM OF KIRCHHOFF TYPE [J].
Gudi, Thirupathi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :657-668