A type of minimal and maximal point theorem in locally convex product cones

被引:1
作者
Motallebi, M. R. [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, Ardebil, Iran
关键词
Minimal and maximal points; relative v-completeness; locally convex cones; VARIATIONAL PRINCIPLE;
D O I
10.1080/02331934.2023.2277718
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Using the neighbourhoods in upper relative topologies, we introduce a quasi-metric on cones which leads to a version of Cantors's intersection theorem for upper and lower relative v-topologies. Then we prove a type of minimal and maximal point theorem for subsets of product cone topologies and obtain the corresponding Ekeland's variational principle (EVP) results for locally convex cone-valued functions.
引用
收藏
页码:939 / 951
页数:13
相关论文
共 14 条
[1]   STABILITY RESULTS FOR EKELAND EPSILON-VARIATIONAL PRINCIPLE AND CONE EXTREMAL SOLUTIONS [J].
ATTOUCH, H ;
RIAHI, H .
MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (01) :173-201
[2]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[3]   On the vectorial Ekeland's variational principle and minimal points in product spaces [J].
Göpfert, A ;
Tammer, C ;
Zalinescu, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (07) :909-922
[4]  
Isac G., 1983, Lecture Notes in Economics and Mathematical Systems, V432, P148
[5]  
KEIMEL K, 1992, ORDERED CONES APPROX
[6]   EPSILON-SOLUTIONS IN VECTOR MINIMIZATION PROBLEMS [J].
LORIDAN, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1984, 43 (02) :265-276
[7]   Locally Convex Product and Direct Sum Cones [J].
Motallebi, M. R. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (03) :913-927
[8]   Products and Direct Sums in Locally Convex Cones [J].
Motallebi, M. R. ;
Saiflu, H. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04) :783-798
[9]   Completeness on locally convex cones [J].
Motallebi, Mohammad Reza .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (10) :785-789
[10]  
Nemeth AB, 1981, Mathematica (Cluj), V23, P43