CoFAR Clutter Channel Estimation via Sparse Bayesian Learning

被引:0
|
作者
Rajput, Kunwar Pritiraj [1 ]
Shankar, M. R. Bhavani [1 ]
Mishra, Kumar Vijay [2 ]
Rangaswamy, Muralidhar [3 ]
Ottersten, Bjorn [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, Luxembourg, Luxembourg
[2] United States CCDC Army Res Lab, Adelphi, MD USA
[3] US Air Force, Res Lab, Wright Patterson AFB, OH 45433 USA
来源
2023 IEEE RADAR CONFERENCE, RADARCONF23 | 2023年
关键词
Bayesian Cramer-Rao bound; clutter map; cognitive fully adaptive radar; RFView; sparse Bayesian learning; RADAR;
D O I
10.1109/RADARCONF2351548.2023.10149624
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A cognitive fully adaptive radar (CoFAR) alters its behavior autonomously to accomplish desired tasks. The knowledge of the target environment is essential to the efficient operation of CoFAR. In this work, we consider the enhanced environment sensing aspect and study the problem of clutter channel impulse response (CIR) estimation in CoFAR. Using the high-fidelity modeling and simulation tool RFView, we show that the clutter CIR is sparse. Subsequently, we propose a sparse Bayesian learning (SBL) framework for estimating the underlying sparse clutter CIR, which does not require the a priori knowledge of the unknown clutter CIR's sparsity profile. Further, we derive the Bayesian CramerRao bound (BCRB) for the proposed method and show the effectiveness of the proposed SBL-based clutter channel estimation method by comparing its performance with the derived BCRB.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] CoFAR Clutter Estimation Using Covariance-Free Bayesian Learning
    Rajput, Kunwar Pritiraj
    Shankar, M. R. Bhavani
    Mishra, Kumar Vijay
    Rangaswamy, Muralidhar
    Ottersten, Bjorn
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2025, 61 (01) : 296 - 313
  • [2] Joint Sparse Bayesian Learning for Channel Estimation in ISAC
    Chen, Kangjian
    Qi, Chenhao
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (08) : 1825 - 1829
  • [3] Super-Resolution Channel Estimation for Massive MIMO via Clustered Sparse Bayesian Learning
    He, Zhen-Qing
    Yuan, Xiaojun
    Chen, Lei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (06) : 6156 - 6160
  • [4] BAYESIAN SPARSE CHANNEL ESTIMATION AND TRACKING
    Chen, Chulong
    Zoltowski, Michael D.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 472 - 475
  • [5] Sparse Bayesian Learning with Atom Refinement for mmWave MIMO Channel Estimation
    Ngoc-Son Duong
    Quoc-Tuan Nguyen
    Khac-Hoang Ngo
    Thai-Mai Dinh-Thi
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 155 - 159
  • [6] Multi-Layer Sparse Bayesian Learning for mmWave Channel Estimation
    Zhang, Yaoyuan
    El-Hajjar, Mohammed
    Yang, Lie-liang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 3485 - 3498
  • [7] Channel Estimation for Reconfigurable Intelligent Surface Assisted Wireless Communications via Structured Sparse Bayesian Learning
    Jin, Ning
    Shu, Fanyi
    Yang, Gang
    Liang, Ying-Chang
    Chen, Xiaodong
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [8] Sparse Bayesian Learning Approach for OTFS Channel Estimation With Fractional Doppler
    Zhang, Yang
    Zhang, Qunfei
    He, Chengbing
    Jing, Lianyou
    Zheng, Tonghui
    Yuen, Chau
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 16846 - 16860
  • [9] Underwater Acoustic Channel Estimation Based on Sparse Bayesian Learning Algorithm
    Jia, Shuyang
    Zou, Sichen
    Zhang, Xiaochuan
    Da, Lianglong
    IEEE ACCESS, 2023, 11 : 7829 - 7836
  • [10] Sparse Bayesian Learning-based Channel Estimation in Millimeter Wave Hybrid MIMO Systems
    Mishra, Amrita
    Rajoriya, Anupama
    Jagannatham, Aditya K.
    Ascheid, Gerd
    2017 IEEE 18TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2017,