De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime

被引:28
作者
Ballarotto, Marco [1 ,2 ]
Willems, Sabine [1 ]
Stiller, Tanja [1 ]
Nawa, Felix [1 ]
Marschner, Julian A. A. [1 ]
Grisoni, Francesca [3 ,4 ]
Merk, Daniel [1 ]
机构
[1] Ludwig Maximilians Univ LMU Munchen, Dept Pharm, D-81377 Munich, Germany
[2] Univ Perugia, Dept Pharmaceut Sci, I-06123 Perugia, Italy
[3] Eindhoven Univ Technol, Inst Complex Mol Syst, Dept Biomed Engn, NL-5612 AZ Eindhoven, Netherlands
[4] Ctr Living Technol, Alliance TU e, WUR, UU,UMC, NL-3584 CB Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
CHEMICAL LANGUAGE; DRUG DISCOVERY;
D O I
10.1021/acs.jmedchem.3c00485
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Generative neural networks trained on SMILES can designinnovativebioactive molecules de novo. These so-called chemicallanguage models (CLMs) have typically been trained on tens of templatemolecules for fine-tuning. However, it is challenging to apply CLMto orphan targets with few known ligands. We have fine-tuned a CLMwith a single potent Nurr1 agonist as template in a fragment-augmentedfashion and obtained novel Nurr1 agonists using sampling frequencyfor design prioritization. Nanomolar potency and binding affinityof the top-ranking design and its structural novelty compared to availableNurr1 ligands highlight its value as an early chemical tool and asa lead for Nurr1 agonist development, as well as the applicabilityof CLM in very low-data scenarios.
引用
收藏
页码:8170 / 8177
页数:8
相关论文
共 29 条
[1]   Drug Analogs from Fragment-Based Long Short-Term Memory Generative Neural Networks [J].
Awale, Mahendra ;
Sirockin, Finton ;
Stiefl, Nikolaus ;
Reymond, Jean-Louis .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (04) :1347-1356
[2]   A straightforward synthesis of functionalized 6H-benzo[c]chromenes from 3-alkenyl chromenes by intermolecular Diels-Alder/aromatization sequence [J].
Ballarotto, Marco ;
Solinas, Mario ;
Temperini, Andrea .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2021, 19 (47) :10359-10375
[3]   Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders [J].
Bjerrum, Esben Jannik ;
Sattarov, Boris .
BIOMOLECULES, 2018, 8 (04)
[4]  
Blaschke T., 2017, ARXIV
[5]   Easy access to drug building-blocks through benzylic C-H functionalization of phenolic ethers by photoredox catalysis [J].
Brandhofer, Tobias ;
Stinglhamer, Martin ;
Derdau, Volker ;
Mendez, Maria ;
Poeverlein, Christoph ;
Garcia Mancheno, Olga .
CHEMICAL COMMUNICATIONS, 2021, 57 (55) :6756-6759
[6]   Thiophene-benzothiadiazole based donor-acceptor-donor (D-A-D) bolaamphiphiles, self-assembly and photophysical properties [J].
Chang, Qing ;
Ma, Tao ;
Ding, Wei ;
Zhang, Lin ;
Cheng, Xiaohong .
SUPRAMOLECULAR CHEMISTRY, 2021, 33 (05) :174-182
[7]   The rise of deep learning in drug discovery [J].
Chen, Hongming ;
Engkvist, Ola ;
Wang, Yinhai ;
Olivecrona, Marcus ;
Blaschke, Thomas .
DRUG DISCOVERY TODAY, 2018, 23 (06) :1241-1250
[8]  
Graves A., 2012, arXiv
[10]   Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity [J].
Grisoni, Francesca ;
Merk, Daniel ;
Consonni, Viviana ;
Hiss, Jan A. ;
Tagliabue, Sara Giani ;
Todeschini, Roberto ;
Schneider, Gisbert .
COMMUNICATIONS CHEMISTRY, 2018, 1