Double and Square Bessel-Gaussian Beams

被引:4
作者
Abramochkin, Eugeny G. [1 ]
Kotlyar, Victor V. [2 ,3 ]
Kovalev, Alexey A. [2 ,3 ]
机构
[1] Lebedev Phys Inst, Novo Sadovaya 221, Samara 443034, Russia
[2] RAS, Branch FSRC Crystallog & Photon, Image Proc Syst Inst, 151 Molodogvardeyskaya St, Samara 443001, Russia
[3] Samara Natl Res Univ, 34 Moskovskoe Shosse, Samara 443086, Russia
基金
俄罗斯科学基金会;
关键词
Bessel-Gaussian beam; optical vortex; paraxial propagation; PROPAGATION;
D O I
10.3390/mi14051029
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We obtain a transform that relates the standard Bessel-Gaussian (BG) beams with BG beams described by the Bessel function of a half-integer order and quadratic radial dependence in the argument. We also study square vortex BG beams, described by the square of the Bessel function, and the products of two vortex BG beams (double-BG beams), described by a product of two different integer-order Bessel functions. To describe the propagation of these beams in free space, we derive expressions as series of products of three Bessel functions. In addition, a vortex-free power-function BG beam of the mth order is obtained, which upon propagation in free space becomes a finite superposition of similar vortex-free power-function BG beams of the orders from 0 to m. Extending the set of finite-energy vortex beams with an orbital angular momentum is useful in searching for stable light beams for probing the turbulent atmosphere and for wireless optical communications. Such beams can be used in micromachines for controlling the movements of particles simultaneously along several light rings.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Higher-order moments and overlaps of rotationally symmetric beams [J].
Bandres, Miguel A. ;
Lopez-Mago, Dorilian ;
Gutierrez-Vega, Julio C. .
JOURNAL OF OPTICS, 2010, 12 (01)
[2]   Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system [J].
Belafhal, A ;
Dalil-Essakali, L .
OPTICS COMMUNICATIONS, 2000, 177 (1-6) :181-188
[3]   Long-distance Bessel beam propagation through Kolmogorov turbulence [J].
Birch, Philip ;
Ituen, Iniabasi ;
Young, Rupert ;
Chatwin, Chris .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (11) :2066-2073
[4]   Bessel-modulated Gaussian beams with quadratic radial dependence [J].
Caron, CFR ;
Potvliege, RM .
OPTICS COMMUNICATIONS, 1999, 164 (1-3) :83-93
[5]  
Chen BS, 2009, CHINESE PHYS B, V18, P1033, DOI 10.1088/1674-1056/18/3/032
[6]   Generating a Bessel-Gaussian beam for the application in optical engineering [J].
Chu, Xiuxiang ;
Sun, Quan ;
Wang, Jing ;
Lu, Pin ;
Xie, Wenke ;
Xu, Xiaojun .
SCIENTIFIC REPORTS, 2015, 5
[7]  
Erdelyi Arthur, 1953, Higher transcendental function, VI
[8]   Propagation of modified Bessel-Gaussian beams in turbulence [J].
Eyyuboglu, Halil Tanyer ;
Hardalac, Firat .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (02) :343-351
[9]   BESSEL-GAUSS BEAMS [J].
GORI, F ;
GUATTARI, G ;
PADOVANI, C .
OPTICS COMMUNICATIONS, 1987, 64 (06) :491-495
[10]   Quantum-mechanical properties of Bessel beams -: art. no. 033411 [J].
Jáuregui, R ;
Hacyan, S .
PHYSICAL REVIEW A, 2005, 71 (03)