Rational points of lattice ideals on a toric variety and toric codes

被引:1
作者
Sahin, Mesut [1 ]
机构
[1] Hacettepe Univ, Dept Math, Ankara, Turkiye
关键词
Generalised toric codes; Rational points; Lattice ideals; Algebraic geometric codes;
D O I
10.1016/j.ffa.2023.102226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the number of rational points of a subgroup inside a toric variety over a finite field defined by a homoge-neous lattice ideal can be computed via Smith normal form of the matrix whose columns constitute a basis of the lattice. This generalizes and yields a concise toric geometric proof of the same fact proven purely algebraically by Lopez and Villarreal for the case of a projective space and a standard homogeneous lattice ideal of dimension one. We also prove a Nullstellensatz type theorem over a finite field establishing a one to one correspondence between subgroups of the dense split torus and certain homogeneous lattice ideals. As appli-cation, we compute the main parameters of generalized toric codes on subgroups of the torus of Hirzebruch surfaces, gen-eralizing the existing literature. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 30 条
  • [1] On parameterized toric codes
    Baran, Esma
    Sahin, Mesut
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (03) : 443 - 467
  • [2] Vanishing ideals of parameterized subgroups in a toric variety
    Baran Ozkan, Esma
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (06) : 2141 - 2150
  • [3] Beelen P, 2009, LECT NOTES COMPUT SC, V5527, P1, DOI 10.1007/978-3-642-02181-7_1
  • [4] Bernshtein D. N., 1975, Functional Analysis and Its Applications, V9, P183, DOI DOI 10.1007/BF01075595
  • [5] Seven new champion linear codes
    Brown, Gavin
    Kasprzyk, Alexander M.
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2013, 16 : 109 - 117
  • [6] Cox D. A., 1995, J ALGEBRAIC GEOM, V4, P17
  • [7] Cox D. A., 2011, Toric Varieties. Graduate studies in mathematics, V124
  • [8] Codes over a weighted torus
    Dias, Eduardo
    Neves, Jorge
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 66 - 79
  • [9] Binomial ideals
    Eisenbud, D
    Sturmfels, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1996, 84 (01) : 1 - 45
  • [10] A note on Nullstellensatz over finite fields
    Ghorpade, Sudhir R.
    [J]. CONTRIBUTIONS IN ALGEBRA AND ALGEBRAIC GEOMETRY, 2019, 738 : 23 - 32