Dim2Clear Network for Infrared Small Target Detection

被引:29
作者
Zhang, Mingjin [1 ]
Zhang, Rui [1 ]
Zhang, Jing [2 ]
Guo, Jie [1 ]
Li, Yunsong [1 ]
Gao, Xinbo [3 ,4 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian, Shaanxi, Peoples R China
[2] Univ Sydney, Fac Engn, Sch Comp Sci, Darlington, NSW 2008, Australia
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
[4] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Task analysis; Superresolution; Image segmentation; Object detection; Semantics; Image reconstruction; Deep neural network; feature enhancement; infrared small target detection (IRSTD); spatial and frequency attention (SFA); TENSOR MODEL;
D O I
10.1109/TGRS.2023.3263848
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Infrared small target detection (IRSTD) is important for many practical applications such as hazardous aircraft warning, especially when the target is not visible in visible light image due to atmospheric conditions such as fog and cloud. However, IRSTD is challenging due to noises, small and dim targets. To address this challenge, we propose a novel Dim2Clear network (Dim2Clear) for IRSTD in this article. Specifically, the Dim2Clear consists of a U-Net backbone encoder, a context mixer decoder (CMD) based on spatial and frequency attention (SFA), and an eyeball-shaped enhancement module (EEM). The CMD is composed of cascaded regular residual blocks where two SFA modules are inserted. Each SFA module receives features from different residual blocks and generates spatial attention map from them to modulate the low-level features, which are then decomposed into low and high frequencies using the discrete cosine transformation. Accordingly, features are further modulated according to the generated frequency attention maps. In this way, SFA can extract both spatial context and frequency context to improve the feature representation capacity. In addition, we design an EEM to suppress the noise and enhance the signal-to-noise ratio (SNR) in the segmentation results from the perspective of image super-resolution. Experiments on the SIRST dataset and our newly constructed IRSTD-1k dataset show that the proposed Dim2Clear outperforms the state-of-the-art (SOTA) methods.
引用
收藏
页数:14
相关论文
共 60 条
[1]   Analysis of new top-hat transformation and the application for infrared dim small target detection [J].
Bai, Xiangzhi ;
Zhou, Fugen .
PATTERN RECOGNITION, 2010, 43 (06) :2145-2156
[2]   A Local Contrast Method for Small Infrared Target Detection [J].
Chen, C. L. Philip ;
Li, Hong ;
Wei, Yantao ;
Xia, Tian ;
Tang, Yuan Yan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :574-581
[3]   An Efficient Infrared Small Target Detection Method Based on Visual Contrast Mechanism [J].
Chen, Yuwen ;
Xin, Yunhong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (07) :962-966
[4]   Attentional Local Contrast Networks for Infrared Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan ;
Zhou, Fei ;
Barnard, Kobus .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (11) :9813-9824
[5]   Asymmetric Contextual Modulation for Infrared Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan ;
Zhou, Fei ;
Barnard, Kobus .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :949-958
[6]   Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) :3752-3767
[7]   Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values [J].
Dai, Yimian ;
Wu, Yiquan ;
Song, Yu ;
Guo, Jun .
INFRARED PHYSICS & TECHNOLOGY, 2017, 81 :182-194
[8]   Max-Mean and Max-Median filters for detection of small-targets [J].
Deshpande, SD ;
Er, MH ;
Ronda, V ;
Chan, P .
SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 :74-83
[9]   A Spatial-Temporal Feature-Based Detection Framework for Infrared Dim Small Target [J].
Du, Jinming ;
Lu, Huanzhang ;
Zhang, Luping ;
Hu, Moufa ;
Chen, Sheng ;
Deng, Yingjie ;
Shen, Xinglin ;
Zhang, Yu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149