Bond behavior of concrete reinforced with high-strength and high-toughness steel bars

被引:6
|
作者
Xiong, Xueyu [1 ,2 ]
Zhang, Yang [1 ]
Liu, Ju [3 ]
He, Manchao [4 ,5 ]
机构
[1] Tongji Univ, Coll Civil Engn, Dept Struct Engn, Shanghai, Peoples R China
[2] Tongji Univ, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai, Peoples R China
[3] Research Co Ltd, Shanghai Inst Architectural Design, Shanghai, Peoples R China
[4] Tongji Univ, Sch Civil Engn, Dept Geotech Engn, Shanghai, Peoples R China
[5] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Beijing, Peoples R China
关键词
High-strength and high-toughness (HSHT) steel; bars; Bond behavior; Critical anchorage length; Bond-slip model; STRESS-SLIP MODEL; JOINTS; PLAIN;
D O I
10.1016/j.conbuildmat.2023.130433
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To investigate the bond behavior between the ordinary concrete and high-strength and high-toughness (HSHT) steel bars with special spiral grooves on the surface, twenty-one specimens were tested by pull-out tests. The effects of test parameters, including anchorage length, the diameter of HSHT steel bars, cover thickness, stirrup ratio, anchorage form, and the number of spiral grooves, on failure modes, bond-slip curves, bond strength, the relative slip, and critical anchorage length were analyzed. The results show that increasing cover thickness and end-anchorage can significantly improve bond strength. The bond strength of specimens reinforced with HSHT steel bars with six spiral grooves is higher than that of three spiral grooves, and it gradually decreases with increasing the anchorage length. In addition, the decrease of the stirrup spacing can improve bond strength. The addition of stirrups can slow down the descending branches and make the failure modes of specimens change from splitting failure to splitting-pullout failure, indicating that the energy absorption capacity and the ductility of specimens have been improved. The models for bond strength and the slip corresponding to bond strength were established based on the existing models and experimental data. At the same time, coefficients B and D were established based on Wu's model. The evaluation shows that the proposed model can accurately calculate the bond-slip curves for ascending branches and descending branches, and it can also predict bond-slip curves corresponding to different failure modes.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effect of Steel Fibers on Bond Strength of Hooked Bars in High-Strength Concrete
    Hamad, Bilal S.
    Abou Haidar, Elias Y.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2011, 23 (05) : 673 - 681
  • [22] Flexural strength design of concrete beams reinforced with high-strength steel bars
    Mast, Robert F.
    Dawood, Mina
    Rizkalla, Sami H.
    Zia, Paul
    ACI STRUCTURAL JOURNAL, 2008, 105 (05) : 570 - 577
  • [23] Flexural strength design of concrete beams reinforced with high-strength steel bars
    Department of BERGER/ABAM Engineers Inc., Seattle, WA, United States
    不详
    不详
    不详
    不详
    ACI Struct J, 2008, 5 (570-577):
  • [24] Seismic fragility analysis of high-strength concrete frame structures reinforced with high-strength steel bars
    Liu, Juan
    Zhang, Jianwei
    Zhao, Zuozhou
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2024, 33 (10):
  • [25] Proportion of High-strength Steel Bars in Reinforced Concrete Ductile Piers
    Xiao Xiao
    Li Zhao-hui
    Liu Sheng-bo
    Wu Qiong-fang
    CIVIL, STRUCTURAL AND ENVIRONMENTAL ENGINEERING, PTS 1-4, 2014, 838-841 : 605 - 610
  • [26] Dynamic tensile behavior and constitutive model of a novel high-strength and high-toughness plate steel
    Tang, Jie
    He, Manchao
    Qiao, Yafei
    Wu, Wentao
    Xia, Min
    ENGINEERING FAILURE ANALYSIS, 2024, 163
  • [27] Design of spun concrete columns reinforced by high-strength steel bars
    Kliukas, Romualdas
    9TH INTERNATIONAL CONFERENCE: MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, VOLS 1-3, 2008, : 648 - 653
  • [28] Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete
    Lee, J. -Y.
    Kim, T. -Y.
    Kim, T. J.
    Yi, C. -K.
    Park, J. -S.
    You, Y. -C.
    Park, Y. -H.
    COMPOSITES PART B-ENGINEERING, 2008, 39 (02) : 258 - 270
  • [29] Bond Characteristics and Shear Behavior of Concrete Beams Reinforced with High-Strength Steel Reinforcement
    Hassan, Tarek K.
    Mantawy, Ahmed
    Soliman, Judy
    Sherif, Ali
    Rizkalla, Sami H.
    ADVANCES IN STRUCTURAL ENGINEERING, 2012, 15 (02) : 303 - 318
  • [30] Structural Behavior of High-Strength Concrete Slabs Reinforced with GFRP Bars
    Adam, Maher A.
    Erfan, Abeer M.
    Habib, Fatma A.
    El-Sayed, Taha A.
    POLYMERS, 2021, 13 (17)