Evaluation of flood susceptibility prediction based on a resampling method using machine learning

被引:15
作者
Aldiansyah, Septianto [1 ]
Wardani, Farida [2 ]
机构
[1] Univ Indonesia, Fac Math & Nat Sci, Dept Geog, Depok, West Java, Indonesia
[2] Univ Negeri Yogyakarta, Fac Social Sci, Geog Educ, Yogyakarta, Indonesia
关键词
area under curve; flood susceptibility; machine learning; resampling method; spatial modeling; urban area; SUPPORT VECTOR MACHINE; FUZZY INFERENCE SYSTEM; LANDSLIDE SUSCEPTIBILITY; RISK-ASSESSMENT; SPATIAL PREDICTION; FLASH-FLOOD; DISCRIMINANT-ANALYSIS; CONDITIONING FACTORS; FREQUENCY RATIO; SURFACE RUNOFF;
D O I
10.2166/wcc.2023.494
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The largest recorded flood loss occurred in the study area in 2013. This study aims to examine resampling methods (i.e. cross-validation (CV), bootstrap, and random subsampling) to improve the performance of seven basic machine learning algorithms: Generalized Linear Model, Support Vector Machine, Random Forest (RF), Boosted Regression Tree, Multivariate Adaptive Regression Splines, Mixture Discriminate Analysis, and Flexible Discriminant Analysis, found the factors causing flooding and the strongest correlation between variables. The model is evaluated using Area Under the Curve, Correlation, True Skill Statistics, and Deviance. This methodology was applied in Kendari City an urban area that faced destructive floods. The evaluation results show that CV-RF has a good performance in predicting flood suscep-tibility in this area with values, AUC 1/4 0.99, COR1/4 0.97, TSS 1/4 0.90, and Deviance1/4 0.05. A total of 89.44 km(2) or equivalent to 32.54% of the total area is a flood-prone area with a dominant area of lowland morphology. Among the 17 parameters that cause flooding, this area is strongly influenced by the vegetation density index and the Terrain Roughness Index (TRI) in the 28 models. The strongest correlation occurs between the TRI and the Sediment Transport Index (STI) 1/4 0.77, which means that flooding in this area is strongly influenced by elements of violence.
引用
收藏
页码:937 / 961
页数:25
相关论文
共 138 条
[1]  
Abijith D, 2021, DISASTER RESIL SUSTA, P577, DOI [DOI 10.1016/B978-0-323-85195-4.00016-0, 10.1016/B978-0-323-85195-4.00016-0]
[2]   How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? [J].
Achour, Yacine ;
Pourghasemi, Hamid Reza .
GEOSCIENCE FRONTIERS, 2020, 11 (03) :871-883
[3]   Flood risk assessment: role of mitigation capacity in spatial flood risk mapping [J].
Ahmed, Naser ;
Hoque, Muhammad Al-Amin ;
Howlader, Newton ;
Pradhan, Biswajeet .
GEOCARTO INTERNATIONAL, 2022, 37 (25) :8394-8416
[4]   Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors [J].
Al-Juaidi, Ahmed E. M. ;
Nassar, Ayman M. ;
Al-Juaidi, Omar E. M. .
ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (24)
[5]  
Aldiansyah S, 2021, Jurnal Geografi Gea, V21, P159, DOI [10.17509/gea.v21i2.37070, 10.17509/gea.v21i2.37070, DOI 10.17509/GEA.V21I2.37070]
[6]   Global projections of river flood risk in a warmer world [J].
Alfieri, Lorenzo ;
Bisselink, Berny ;
Dottori, Francesco ;
Naumann, Gustavo ;
de Roo, Ad ;
Salamon, Peter ;
Wyser, Klaus ;
Feyen, Luc .
EARTHS FUTURE, 2017, 5 (02) :171-182
[7]   GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naive Bayes tree, bivariate statistics and logistic regression: A case of Topla basin, Slovakia [J].
Ali, Sk Ajim ;
Parvin, Farhana ;
Quoc Bao Pham ;
Vojtek, Matej ;
Vojtekova, Jana ;
Costache, Romulus ;
Nguyen Thi Thuy Linh ;
Hong Quan Nguyen ;
Ahmad, Ateeque ;
Ghorbani, Mohammad Ali .
ECOLOGICAL INDICATORS, 2020, 117
[8]   Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) [J].
Allouche, Omri ;
Tsoar, Asaf ;
Kadmon, Ronen .
JOURNAL OF APPLIED ECOLOGY, 2006, 43 (06) :1223-1232
[9]  
[Anonymous], 2013, DAT BENC IND
[10]  
[Anonymous], 2013, Landslide Science and Practice, DOI [DOI 10.1007/978-3-642-31325-742, 10.1007/978-3-642-31325-742]