Interior Hessian estimates for a class of Hessian type equations

被引:15
作者
Chen, Chuanqiang [1 ]
Dong, Weisong [2 ]
Han, Fei [3 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
[2] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
[3] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang Uygur, Peoples R China
关键词
Primary; 35B45; Secondary; 35J60; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; NEUMANN PROBLEM; PLURISUBHARMONICITY; CONVEXITY; EXISTENCE;
D O I
10.1007/s00526-022-02385-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce some Hessian operators sigma k(eta) and sigma k(eta)/sigma l(eta) by a self-adjoint mapping and the corresponding convex cone (sic)k, and derive interior a priori Hessian estimates for the equ ation sigma k(eta) sigma l(eta) = f (x) in (sic)k with 0 <= l < k < n. As an application we prove Pogorelov type estimates which imply Liouville theorem for such equation.
引用
收藏
页数:15
相关论文
共 42 条
[31]  
SHA JP, 1987, J DIFFER GEOM, V25, P353
[32]   P-CONVEX RIEMANNIAN-MANIFOLDS [J].
SHA, JP .
INVENTIONES MATHEMATICAE, 1986, 83 (03) :437-447
[33]  
Shankar R., DUKE MATH J
[34]   Hessian estimate for semiconvex solutions to the sigma-2 equation [J].
Shankar, Ravi ;
Yuan, Yu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
[35]   Gauduchon metrics with prescribed volume form [J].
Szekelyhidi, Gabor ;
Tosatti, Valentino ;
Weinkove, Ben .
ACTA MATHEMATICA, 2017, 219 (01) :181-211
[36]   THE MONGE-AMPERE EQUATION FOR (n-1)-PLURISUBHARMONIC FUNCTIONS ON A COMPACT KAHLER MANIFOLD [J].
Tosatti, Valentino ;
Weinkove, Ben .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (02) :311-346
[37]  
Trudinger NS, 1997, COMMUN PART DIFF EQ, V22, P1251
[38]   On the Dirichlet problem for Hessian equations [J].
Trudinger, NS .
ACTA MATHEMATICA, 1995, 175 (02) :151-164
[40]   Hessian Estimates for the Sigma-2 Equation in Dimension 3 [J].
Warren, Micah ;
Yuan, Yu .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (03) :305-321