Interior Hessian estimates for a class of Hessian type equations

被引:15
作者
Chen, Chuanqiang [1 ]
Dong, Weisong [2 ]
Han, Fei [3 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Zhejiang, Peoples R China
[2] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
[3] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang Uygur, Peoples R China
关键词
Primary; 35B45; Secondary; 35J60; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; NEUMANN PROBLEM; PLURISUBHARMONICITY; CONVEXITY; EXISTENCE;
D O I
10.1007/s00526-022-02385-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce some Hessian operators sigma k(eta) and sigma k(eta)/sigma l(eta) by a self-adjoint mapping and the corresponding convex cone (sic)k, and derive interior a priori Hessian estimates for the equ ation sigma k(eta) sigma l(eta) = f (x) in (sic)k with 0 <= l < k < n. As an application we prove Pogorelov type estimates which imply Liouville theorem for such equation.
引用
收藏
页数:15
相关论文
共 42 条
[1]  
[Anonymous], 2005, Clay Mathematics Proceedings
[2]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[3]  
[Anonymous], 1959, Journal Danalyse Mathmatique, DOI DOI 10.1007/BF02787679
[4]   Liouville property and regularity of a Hessian quotient equation [J].
Bao, JG ;
Chen, JY ;
Guan, B ;
Ji, M .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (02) :301-316
[5]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[6]   A LIOUVILLE PROBLEM FOR THE SIGMA-2 EQUATION [J].
Chang, Sun-Yung Alice ;
Yuan, Yu .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) :659-664
[7]   The Neumann Problem of Complex Hessian Quotient Equations [J].
Chen, Chuanqiang ;
Wei, Wei .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (23) :17652-17672
[8]   Optimal concavity of some Hessian operators and the prescribed σ2 curvature measure problem [J].
Chen ChuanQiang .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (03) :639-651
[9]   Pogorelov type estimates for a class of Hessian quotient equations [J].
Chen, Li ;
Tu, Qiang ;
Xiang, Ni .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 282 :272-284
[10]   A variational theory of the Hessian equation [J].
Chou, KS ;
Wang, XJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) :1029-1064