Arithmetic complexity revisited

被引:0
作者
Nikolaev, Igor V. [1 ]
机构
[1] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, New York, NY 11439 USA
关键词
Elliptic curve; Noncommutative torus; Brock-Elkies-Jordan variety;
D O I
10.1007/s41478-023-00554-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The arithmetic complexity counts the number of algebraically independent entries in the periodic continued fraction theta = [b(1), ... , b(N), (a(1), ... , a(k))]. If A(theta) is a noncommutative torus corresponding to the rational elliptic curve epsilon(K), then the rank of epsilon(K) is given by a simple formula r(epsilon(K)) = c(A(theta)) -1, where c(A(theta)) is the arithmetic complexity of theta. We prove that c(A(theta)) is equal to the dimension of the Brock-Elkies-Jordan variety of theta introduced in Brock et al. (Acta Arith 197: 379-420, 2021). Following Zagier and Lemmermeyer, we evaluate the Shafarevich-Tate group of epsilon(K).
引用
收藏
页码:2115 / 2126
页数:12
相关论文
共 50 条
  • [31] Performance of finite field arithmetic in an elliptic curve cryptosystem
    Li, Z
    Higgins, J
    Clement, M
    [J]. NINTH INTERNATIONAL SYMPOSIUM ON MODELING, ANALYSIS AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS, PROCEEDINGS, 2001, : 249 - 256
  • [32] BOOTH ALGORITHM MODULAR ARITHMETIC FOR SCALAR MULTIPLICATION OPERATIONS
    Ayuso Perez, Jesus
    [J]. 3C TIC, 2018, 7 (02): : 11 - 35
  • [33] Some applications of the Hales-Jewett theorem to field arithmetic
    Bo-Hae Im
    Michael Larsen
    [J]. Israel Journal of Mathematics, 2013, 198 : 35 - 47
  • [34] New Fast Algorithms for Elliptic Curve Arithmetic in Affine Coordinates
    Yu, Wei
    Kim, Kwang Ho
    Jo, Myong Song
    [J]. ADVANCES IN INFORMATION AND COMPUTER SECURITY (IWSEC 2015), 2015, 9241 : 56 - 64
  • [35] Efficient arithmetic in optimal extension fields using simultaneous multiplication
    Lee, MK
    Park, K
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (05) : 1316 - 1321
  • [36] Arithmetic properties of p-adic elliptic logarithmic functions
    Hirata-Kohno, Noriko
    [J]. GEOMETRY AND ANALYSIS OF AUTOMORPHIC FORMS OF SEVERAL VARIABLES, 2012, 7 : 110 - 119
  • [37] 14-term Arithmetic Progressions on Quartic Elliptic Curves
    MacLeod, Allan J.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2006, 9 (01)
  • [38] On Kahler's integral differential forms of arithmetic function fields
    Kunz, E
    Waldi, R
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2003, 73 (1): : 297 - 310
  • [39] Derived categories of irreducible projective curves of arithmetic genus one
    Burban, Igor
    Kreussler, Bernd
    [J]. COMPOSITIO MATHEMATICA, 2006, 142 (05) : 1231 - 1262
  • [40] Algorithms and arithmetic operators for computing the ηT pairing in characteristic three
    Beuchat, Jean-Luc
    Brisebarre, Nicolas
    Detrey, Jeremie
    Okamoto, Eiji
    Shirase, Masaaki
    Takagi, Tsuyoshi
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (11) : 1454 - 1468