Arithmetic complexity revisited

被引:0
作者
Nikolaev, Igor V. [1 ]
机构
[1] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, New York, NY 11439 USA
关键词
Elliptic curve; Noncommutative torus; Brock-Elkies-Jordan variety;
D O I
10.1007/s41478-023-00554-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The arithmetic complexity counts the number of algebraically independent entries in the periodic continued fraction theta = [b(1), ... , b(N), (a(1), ... , a(k))]. If A(theta) is a noncommutative torus corresponding to the rational elliptic curve epsilon(K), then the rank of epsilon(K) is given by a simple formula r(epsilon(K)) = c(A(theta)) -1, where c(A(theta)) is the arithmetic complexity of theta. We prove that c(A(theta)) is equal to the dimension of the Brock-Elkies-Jordan variety of theta introduced in Brock et al. (Acta Arith 197: 379-420, 2021). Following Zagier and Lemmermeyer, we evaluate the Shafarevich-Tate group of epsilon(K).
引用
收藏
页码:2115 / 2126
页数:12
相关论文
共 50 条
  • [21] ARITHMETIC PROGRESSIONS ON CONGRUENT NUMBER ELLIPTIC CURVES
    Spearman, Blair K.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (06) : 2033 - 2044
  • [22] Arithmetic Progressions on y(2) = x(3)
    Dey, Pallab Kanti
    Maji, Bibekananda
    JOURNAL OF INTEGER SEQUENCES, 2016, 19 (07)
  • [23] The Arithmetic Geometry of Resonant Rossby Wave Triads
    Kopp, Gene S.
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 352 - 373
  • [24] New formulae for efficient elliptic curve arithmetic
    Hisil, Huseyin
    Carter, Gary
    Dawson, Ed
    PROGRESS IN CRYPTOLOGY - INDOCRYPT 2007, 2007, 4859 : 138 - 151
  • [25] Arithmetic operators for pairing-based cryptography
    Beuchat, Jean-Luc
    Brisebarre, Nicolas
    Detrey, Jeremie
    Okamoto, Eiji
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2007, PROCEEDINGS, 2007, 4727 : 239 - +
  • [26] Jacobi Quartic Curves Revisited
    Hisil, Huseyin
    Wong, Kenneth Koon-Ho
    Carter, Gary
    Dawson, Ed
    INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2009, 5594 : 452 - 468
  • [27] Fast arithmetic of elliptic curve cryptosystem in mobile communication
    Ya-Lin, M
    Liang, Z
    Zheng-Zhong, B
    Ying-Chun, G
    2005 IEEE/ACES INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND APPLIED COMPUTATIONAL ELECTROMAGNETICS, 2005, : 1055 - 1059
  • [28] ARITHMETIC LOCAL CONSTANTS FOR ABELIAN VARIETIES WITH EXTRA ENDOMORPHISMS
    Chetty, Sunil
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2016, 55 (01) : 59 - 81
  • [29] Arithmetic of the level four theta model of elliptic curves
    Diao, Oumar
    Fouotsa, Emmanuel
    AFRIKA MATEMATIKA, 2015, 26 (3-4) : 283 - 301
  • [30] BOOTH ALGORITHM MODULAR ARITHMETIC FOR SCALAR MULTIPLICATION OPERATIONS
    Ayuso Perez, Jesus
    3C TIC, 2018, 7 (02): : 11 - 35