Arithmetic complexity revisited

被引:0
|
作者
Nikolaev, Igor V. [1 ]
机构
[1] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, New York, NY 11439 USA
来源
JOURNAL OF ANALYSIS | 2023年 / 31卷 / 03期
关键词
Elliptic curve; Noncommutative torus; Brock-Elkies-Jordan variety;
D O I
10.1007/s41478-023-00554-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The arithmetic complexity counts the number of algebraically independent entries in the periodic continued fraction theta = [b(1), ... , b(N), (a(1), ... , a(k))]. If A(theta) is a noncommutative torus corresponding to the rational elliptic curve epsilon(K), then the rank of epsilon(K) is given by a simple formula r(epsilon(K)) = c(A(theta)) -1, where c(A(theta)) is the arithmetic complexity of theta. We prove that c(A(theta)) is equal to the dimension of the Brock-Elkies-Jordan variety of theta introduced in Brock et al. (Acta Arith 197: 379-420, 2021). Following Zagier and Lemmermeyer, we evaluate the Shafarevich-Tate group of epsilon(K).
引用
收藏
页码:2115 / 2126
页数:12
相关论文
共 50 条
  • [1] Arithmetic complexity revisited
    Igor V. Nikolaev
    The Journal of Analysis, 2023, 31 : 2115 - 2126
  • [2] Montgomery curve arithmetic revisited
    Kim, Kwang Ho
    Mesnager, Sihem
    Pak, Kyong Il
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2024, 14 (02) : 343 - 362
  • [3] EFFICIENT QUANTUM CIRCUITS FOR BINARY ELLIPTIC CURVE ARITHMETIC: REDUCING T-GATE COMPLEXITY
    Amento, Brittanney
    Roetteler, Martin
    Steinwandt, Rainer
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (7-8) : 631 - 644
  • [4] Sklyanin algebras revisited
    Igor V. Nikolaev
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [5] Sklyanin algebras revisited
    Nikolaev, Igor V.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (01):
  • [6] Arithmetic properties of polynomials
    Yong Zhang
    Zhongyan Shen
    Periodica Mathematica Hungarica, 2020, 81 : 134 - 148
  • [7] Arithmetic properties of polynomials
    Zhang, Yong
    Shen, Zhongyan
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (01) : 134 - 148
  • [8] Arithmetic Progressions on Edwards Curves
    Moody, Dustin
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (01)
  • [9] On products of consecutive arithmetic progressions
    Zhang, Yong
    Cai, Tianxin
    JOURNAL OF NUMBER THEORY, 2015, 147 : 287 - 299
  • [10] Arithmetic Progressions on Huff Curves
    Choudhry, Ajai
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)