On computing root polynomials and minimal bases of matrix pencils
被引:2
作者:
Noferini, Vanni
论文数: 0引用数: 0
h-index: 0
机构:
Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, FinlandAalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
Noferini, Vanni
[1
]
Van Dooren, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Dept Math Engn, Av Lemaitre 4, B-1348 Louvain La Neuve, BelgiumAalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
Van Dooren, Paul
[2
]
机构:
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
[2] Catholic Univ Louvain, Dept Math Engn, Av Lemaitre 4, B-1348 Louvain La Neuve, Belgium
Root polynomial;
Maximal set;
Minimal basis;
Matrix pencil;
Staircase algorithm;
Smith form;
Local Smith form;
CANONICAL FORM;
LINEARIZATIONS;
COMPUTATION;
ALGORITHM;
RECOVERY;
D O I:
10.1016/j.laa.2022.10.025
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We revisit the notion of root polynomials, thoroughly studied in (Dopico and Noferini, 2020 [9]) for general polynomial matrices, and show how they can efficiently be computed in the case of a matrix pencil lambda E+ A. The method we propose makes extensive use of the staircase algorithm, which is known to compute the left and right minimal indices of the Kronecker structure of the pencil. In addition, we show here that the staircase algorithm, applied to the expansion (lambda -lambda(0))E+(A - lambda E-0), constructs a block triangular pencil from which a minimal basis and a maximal set of root polynomials at the eigenvalue lambda(0), can be computed in an efficient manner. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).