On computing root polynomials and minimal bases of matrix pencils

被引:2
作者
Noferini, Vanni [1 ]
Van Dooren, Paul [2 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
[2] Catholic Univ Louvain, Dept Math Engn, Av Lemaitre 4, B-1348 Louvain La Neuve, Belgium
基金
芬兰科学院;
关键词
Root polynomial; Maximal set; Minimal basis; Matrix pencil; Staircase algorithm; Smith form; Local Smith form; CANONICAL FORM; LINEARIZATIONS; COMPUTATION; ALGORITHM; RECOVERY;
D O I
10.1016/j.laa.2022.10.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We revisit the notion of root polynomials, thoroughly studied in (Dopico and Noferini, 2020 [9]) for general polynomial matrices, and show how they can efficiently be computed in the case of a matrix pencil lambda E+ A. The method we propose makes extensive use of the staircase algorithm, which is known to compute the left and right minimal indices of the Kronecker structure of the pencil. In addition, we show here that the staircase algorithm, applied to the expansion (lambda -lambda(0))E+(A - lambda E-0), constructs a block triangular pencil from which a minimal basis and a maximal set of root polynomials at the eigenvalue lambda(0), can be computed in an efficient manner. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:86 / 115
页数:30
相关论文
共 28 条
  • [1] [Anonymous], 1982, Matrix Polynomials
  • [2] Numerical computation of minimal polynomial bases: A generalized resultant approach
    Antoniou, EN
    Vardulakis, AIG
    Vologiannidis, S
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 : 264 - 278
  • [3] A PENCIL APPROACH FOR EMBEDDING A POLYNOMIAL MATRIX INTO A UNIMODULAR MATRIX
    BEELEN, T
    VANDOOREN, P
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (01) : 77 - 89
  • [4] AN IMPROVED ALGORITHM FOR THE COMPUTATION OF KRONECKER CANONICAL FORM OF A SINGULAR PENCIL
    BEELEN, T
    VANDOOREN, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 105 : 9 - 65
  • [5] Beltran C, 2022, Arxiv, DOI arXiv:2109.10610
  • [6] THE QUASI-KRONECKER FORM FOR MATRIX PENCILS
    Berger, Thomas
    Trenn, Stephan
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (02) : 336 - 368
  • [7] cera V. Ku., 1979, DISCRETE LINEAR CONT
  • [8] FIEDLER COMPANION LINEARIZATIONS AND THE RECOVERY OF MINIMAL INDICES
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) : 2181 - 2204
  • [9] LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 371 - 402
  • [10] Root polynomials and their role in the theory of matrix polynomials
    Dopico, Froilan M.
    Noferini, Vanni
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 584 : 37 - 78