Estimation of the nonparametric mean and covariance functions for multivariate longitudinal and sparse functional data

被引:2
|
作者
Xu Tengteng [1 ]
Zhang, Riquan [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate longitudinal and sparse functional data; full quasi-likelihood; kernel method; covariance decomposition; leave-one-out cross validation; DENSITY-ESTIMATION; SELECTION; MODELS;
D O I
10.1080/03610926.2022.2032170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the mean and covariance functions is very important to analyze multivariate longitudinal and sparse functional data. We define a new covariance function that not only consider the correlation of different observed responses for the same biomarker but different biomarkers. Full quasi-likelihood and the kernel method are used to approximate mean and covariance functions, the covariance decomposition is considered to decompose covariance functions to correlation function and variance function. We use the full quasi-likelihood to solve measurement errors variance lambda and choose the iterative algorithm to update the multivariate mean and covariance functions until convergence. Gaussian kernel and leave-one-out cross-validation are used to select bandwidth h. Finally, we give theoretical properties of the unknown functions and prove their convergence. Simulation and application results show the effectiveness of our proposed method.
引用
收藏
页码:6616 / 6639
页数:24
相关论文
共 50 条
  • [31] Functional data analysis with covariate-dependent mean and covariance structures
    Zhang, Chenlin
    Lin, Huazhen
    Liu, Li
    Liu, Jin
    Li, Yi
    BIOMETRICS, 2023, 79 (03) : 2232 - 2245
  • [32] Robust Online Covariance and Sparse Precision Estimation Under Arbitrary Data Corruption
    Yao, Tong
    Sundaram, Shreyas
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5002 - 5007
  • [33] Bayesian nonparametric functional data analysis through density estimation
    Rodriguez, Abel
    Dunson, David B.
    Gelfand, Alan E.
    BIOMETRIKA, 2009, 96 (01) : 149 - 162
  • [34] Dynamic Multivariate Functional Data Modeling via Sparse Subspace Learning
    Zhang, Chen
    Yan, Hao
    Lee, Seungho
    Shi, Jianjun
    TECHNOMETRICS, 2021, 63 (03) : 370 - 383
  • [35] Asymptotic Normality of Nonparametric Kernel Regression Estimation for Missing at Random Functional Spatial Data
    Alshahrani, Fatimah
    Almanjahie, Ibrahim M.
    Benchikh, Tawfik
    Fetitah, Omar
    Attouch, Mohammed Kadi
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [36] Joint Mean-Covariance Models with Applications to Longitudinal Data in Partially Linear Model
    Mao, Jie
    Zhu, Zhongyi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (17) : 3119 - 3140
  • [37] Analysis of censored discrete longitudinal data: Estimation of mean response
    Gunnes, Nina
    Farewell, Daniel M.
    Seierstad, Taral G.
    Aalen, Odd O.
    STATISTICS IN MEDICINE, 2009, 28 (04) : 605 - 624
  • [38] Multivariate control charts for monitoring process mean vector of individual observations under regularized covariance estimation
    Omolofe, Olusola T.
    Adegoke, Nurudeen A.
    Adeoti, Olatunde A.
    Fasoranbaku, Olusoga A.
    Abbasi, Saddam Akber
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2022, 19 (03): : 277 - 298
  • [39] Estimation and model identification of longitudinal data time-varying nonparametric models
    Liu, Shu
    You, Jinhong
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 156 : 116 - 136
  • [40] Flexible estimation of covariance function by penalized spline with application to longitudinal family data
    Wang, Yuanjia
    STATISTICS IN MEDICINE, 2011, 30 (15) : 1883 - 1897