Estimation of the nonparametric mean and covariance functions for multivariate longitudinal and sparse functional data

被引:2
|
作者
Xu Tengteng [1 ]
Zhang, Riquan [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate longitudinal and sparse functional data; full quasi-likelihood; kernel method; covariance decomposition; leave-one-out cross validation; DENSITY-ESTIMATION; SELECTION; MODELS;
D O I
10.1080/03610926.2022.2032170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the mean and covariance functions is very important to analyze multivariate longitudinal and sparse functional data. We define a new covariance function that not only consider the correlation of different observed responses for the same biomarker but different biomarkers. Full quasi-likelihood and the kernel method are used to approximate mean and covariance functions, the covariance decomposition is considered to decompose covariance functions to correlation function and variance function. We use the full quasi-likelihood to solve measurement errors variance lambda and choose the iterative algorithm to update the multivariate mean and covariance functions until convergence. Gaussian kernel and leave-one-out cross-validation are used to select bandwidth h. Finally, we give theoretical properties of the unknown functions and prove their convergence. Simulation and application results show the effectiveness of our proposed method.
引用
收藏
页码:6616 / 6639
页数:24
相关论文
共 50 条
  • [21] Multidimensional linear functional estimation in sparse Gaussian models and robust estimation of the mean
    Collier, Olivier
    Dalalyan, Arnak S.
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 2830 - 2864
  • [22] Nonparametric estimation of expectile regression in functional dependent data
    Almanjahie, Ibrahim M.
    Bouzebda, Salim
    Kaid, Zoulikha
    Laksaci, Ali
    JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (01) : 250 - 281
  • [23] RECURSIVE NONPARAMETRIC REGRESSION ESTIMATION FOR INDEPENDENT FUNCTIONAL DATA
    Slaoui, Yousri
    STATISTICA SINICA, 2020, 30 (01) : 417 - 437
  • [24] A Geometric Approach to Maximum Likelihood Estimation of the Functional Principal Components From Sparse Longitudinal Data
    Peng, Jie
    Paul, Debashis
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (04) : 995 - 1015
  • [25] Estimation of spatial-functional based-line logit model for multivariate longitudinal data
    Xu, Tengteng
    Zhang, Riquan
    Zhang, Xiuzhen
    COMPUTATIONAL STATISTICS, 2023, 38 (01) : 79 - 99
  • [26] Robust estimation for the correlation matrix of multivariate longitudinal data
    Lu, Fei
    Xue, Liugen
    Hu, Yuping
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (13) : 2473 - 2496
  • [27] Estimation of spatial-functional based-line logit model for multivariate longitudinal data
    Tengteng Xu
    Riquan Zhang
    Xiuzhen Zhang
    Computational Statistics, 2023, 38 : 79 - 99
  • [28] Robust functional principal components for sparse longitudinal data
    Boente, Graciela
    Salibian-Barrera, Matias
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (02): : 159 - 188
  • [29] Joint Mean and Covariance Estimation with Unreplicated Matrix-Variate Data
    Hornstein, Michael
    Fan, Roger
    Shedden, Kerby
    Zhou, Shuheng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 682 - 696
  • [30] Parameter Estimation with Data-Driven Nonparametric Likelihood Functions
    Jiang, Shixiao W.
    Harlim, John
    ENTROPY, 2019, 21 (06)