Estimation of the nonparametric mean and covariance functions for multivariate longitudinal and sparse functional data

被引:2
|
作者
Xu Tengteng [1 ]
Zhang, Riquan [1 ]
机构
[1] East China Normal Univ, Sch Stat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate longitudinal and sparse functional data; full quasi-likelihood; kernel method; covariance decomposition; leave-one-out cross validation; DENSITY-ESTIMATION; SELECTION; MODELS;
D O I
10.1080/03610926.2022.2032170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of the mean and covariance functions is very important to analyze multivariate longitudinal and sparse functional data. We define a new covariance function that not only consider the correlation of different observed responses for the same biomarker but different biomarkers. Full quasi-likelihood and the kernel method are used to approximate mean and covariance functions, the covariance decomposition is considered to decompose covariance functions to correlation function and variance function. We use the full quasi-likelihood to solve measurement errors variance lambda and choose the iterative algorithm to update the multivariate mean and covariance functions until convergence. Gaussian kernel and leave-one-out cross-validation are used to select bandwidth h. Finally, we give theoretical properties of the unknown functions and prove their convergence. Simulation and application results show the effectiveness of our proposed method.
引用
收藏
页码:6616 / 6639
页数:24
相关论文
共 50 条
  • [1] Efficient Estimation of the Nonparametric Mean and Covariance Functions for Longitudinal and Sparse Functional Data
    Zhou, Ling
    Lin, Huazhen
    Liang, Hua
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1550 - 1564
  • [2] Nonparametric estimation of mean and covariance structures for longitudinal data
    Lin, Huazhen
    Pan, Jianxin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (04): : 557 - 574
  • [3] Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation
    Li, Yehua
    BIOMETRIKA, 2011, 98 (02) : 355 - 370
  • [4] On mean derivative estimation of longitudinal and functional data: from sparse to dense
    Ghale-Joogh, Hassan Sharghi
    Hosseini-Nasab, S. Mohammad E.
    STATISTICAL PAPERS, 2021, 62 (04) : 2047 - 2066
  • [5] Nonparametric operator-regularized covariance function estimation for functional data
    Wong, Raymond K. W.
    Zhang, Xiaoke
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 131 - 144
  • [6] A Semiparametric Approach to Simultaneous Covariance Estimation for Bivariate Sparse Longitudinal Data
    Das, Kiranmoy
    Daniels, Michael J.
    BIOMETRICS, 2014, 70 (01) : 33 - 43
  • [7] RKHS-based functional nonparametric regression for sparse and irregular longitudinal data
    Avery, Matthew
    Wu, Yichao
    Helen Zhang, Hao
    Zhang, Jiajia
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (02): : 204 - 216
  • [8] NONPARAMETRIC REGRESSION ANALYSIS OF MULTIVARIATE LONGITUDINAL DATA
    Xiang, Dongdong
    Qiu, Peihua
    Pu, Xiaolong
    STATISTICA SINICA, 2013, 23 (02) : 769 - 789
  • [9] Estimation of covariance matrix of multivariate longitudinal data using modified Choleksky and hypersphere decompositions
    Lee, Keunbaik
    Cho, Hyunsoon
    Kwak, Min-Sun
    Jang, Eun Jin
    BIOMETRICS, 2020, 76 (01) : 75 - 86
  • [10] Covariance Partition Priors: A Bayesian Approach to Simultaneous Covariance Estimation for Longitudinal Data
    Gaskins, J. T.
    Daniels, M. J.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (01) : 167 - 186