Enhanced lithium-ion battery state of charge estimation in electric vehicles using extended Kalman filter and deep neural network

被引:7
|
作者
Djaballah, Younes [1 ]
Negadi, Karim [2 ]
Boudiaf, Mohamed [1 ]
机构
[1] Ziane Achour Univ Djelfa, Appl Automat & Diagnost Ind Lab LAADI, BP 3117, Djelfa, Algeria
[2] Univ Tiaret, Dept Elect Engn, Lab L2GEGI, Tiaret 14000, Algeria
关键词
Lithium-ion battery; State of charge estimation; Extended Kalman Filter; Electric vehicle; OF-CHARGE; SYSTEMS;
D O I
10.1007/s40435-024-01388-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an electric vehicle, it is crucial to accurately determine the remaining energy in the battery pack, commonly referred to as the state of charge. Obtaining this information through direct measurement in such applications is often challenging. To address this issue, an algorithm that combines an extended Kalman filter and deep neural networks was developed using Matlab Simulink. The results demonstrate that the proposed strategy achieves the highest possible accuracy in estimating the state of charge. The output of the model has consistently been more accurate, with a predicting error for the state of charge that is less than 1.59%. This demonstrates the effectiveness and efficiency of this method. This approach is already applicable in practical applications.
引用
收藏
页码:2864 / 2871
页数:8
相关论文
共 50 条
  • [41] Estimation of Lithium-Ion Battery State of Charge for Electric Vehicles Using an Adaptive Joint Algorithm
    Sakile, Rajakumar
    Sinha, Umesh Kumar
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (03)
  • [42] An Immune Genetic Extended Kalman Particle Filter approach on state of charge estimation for lithium-ion battery
    Zhengxin, Jiang
    Qin, Shi
    Yujiang, Wei
    Hanlin, Wei
    Bingzhao, Gao
    Lin, He
    ENERGY, 2021, 230
  • [43] Enhanced lithium-ion battery state-of-charge estimation for Electric Vehicles using the AOA-DNN approach
    Thangaraj, Kokilavani
    Indiran, Rajarajeswari
    Ananth, Vasantharaj
    Raman, Mohan
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (06) : 2856 - 2873
  • [44] Lithium-ion battery state of charge estimation based on square-root unscented Kalman filter
    Gholizade-Narm, Hossein
    Charkhgard, Mohammad
    IET POWER ELECTRONICS, 2013, 6 (09) : 1833 - 1841
  • [45] State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter
    Ma, Hongli
    Bao, Xinyuan
    Lopes, Antonio
    Chen, Liping
    Liu, Guoquan
    Zhu, Min
    BATTERIES-BASEL, 2024, 10 (06):
  • [46] Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles
    Andre, D.
    Nuhic, A.
    Soczka-Guth, T.
    Sauer, D. U.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (03) : 951 - 961
  • [47] Lithium-ion Battery State of Charge Estimation Method Using Optimized Deep Recurrent Neural Network Algorithm
    Lipu, M. S. Hossain
    Hannan, M. A.
    Hussain, Aini
    Saad, M. H. M.
    Ayob, A.
    Muttaqi, K. M.
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [48] A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network
    Cui, Zhenhua
    Wang, Licheng
    Li, Qiang
    Wang, Kai
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) : 5423 - 5440
  • [49] State of Charge Estimation for Lithium-ion Battery using Recurrent Neural Network
    Liu, Van-Tsai
    Sun, Yi-Kai
    Lu, Hong-Yi
    Wang, Sun-Kai
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED MANUFACTURING (IEEE ICAM), 2018, : 376 - 379
  • [50] State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator
    Sun, Daoming
    Yu, Xiaoli
    Wang, Chongming
    Zhang, Cheng
    Huang, Rui
    Zhou, Quan
    Amietszajew, Taz
    Bhagat, Rohit
    ENERGY, 2021, 214