Reinforcement Learning for Stochastic Max-Plus Linear Systems

被引:0
|
作者
Subramanian, Vignesh [1 ]
Farhadi, Farzaneh [2 ]
Soudjani, Sadegh [3 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Newcastle Univ, Sch Engn, Newcastle Upon Tyne, Tyne & Wear, England
[3] Newcastle Univ, Sch Comp, Newcastle Upon Tyne, Tyne & Wear, England
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
基金
英国工程与自然科学研究理事会;
关键词
DISCRETE-EVENT SYSTEMS; REACHABILITY ANALYSIS;
D O I
10.1109/CDC49753.2023.10384207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the design of control policies for Discrete Event Systems under uncertainties. We capture the timing of the events using the framework of max-plus-linear systems in which the time between consecutive events depends on random delays with unknown distributions. Our policy synthesis approach is with respect to a cost function, and it can be extended directly to satisfy safety specifications on the timing of events. The main novelty of our approach is to translate the system evolution to a Markov decision process (MDP) that has an uncountable state space and develop a stochastic optimisation problem under the evolution of the MDP. To tackle the unknown distribution of uncertainties (thus unknown transition probabilities in the MDP), we employ model-free reinforcement learning to perform optimisations and find control policies for the system. Our implementation results on the 9-dimensional model of a railway network show superiority of our learning approach in comparison with the stochastic model predictive control approach.
引用
收藏
页码:5631 / 5638
页数:8
相关论文
共 50 条
  • [1] Tropical Abstractions of Max-Plus Linear Systems
    Mufid, Muhammad Syifa'ul
    Adzkiya, Dieky
    Abate, Alessandro
    FORMAL MODELING AND ANALYSIS OF TIMED SYSTEMS, FORMATS 2018, 2018, 11022 : 271 - 287
  • [2] Reachability for Interval Max-Plus Linear Systems
    Wang, Cailu
    Tao, Yuegang
    Yang, Peng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2392 - 2396
  • [3] Model Predictive Control for Stochastic Max-Plus Linear Systems With Chance Constraints
    Xu, Jia
    van den Boom, Ton
    De Schutter, Bart
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (01) : 337 - 342
  • [4] Stochastic Filtering Scheme of Implicit Forms of Uncertain Max-Plus Linear Systems
    Espindola-Winck, Guilherme
    Hardouin, Laurent
    Lhommeau, Mehdi
    Santos-Mendes, Rafael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4370 - 4376
  • [5] On the set-estimation of uncertain Max-Plus Linear systems
    Espindola-Winck, Guilherme
    Hardouin, Laurent
    Lhommeau, Mehdi
    AUTOMATICA, 2025, 171
  • [6] Structural Controllability of Switching Max-Plus Linear Systems
    Gupta, Abhimanyu
    van den Boom, Ton
    van der Woude, Jacob
    De Schutter, Bart
    IFAC PAPERSONLINE, 2020, 53 (02): : 1936 - 1942
  • [7] On just in time control of switching max-plus linear systems
    Alsaba, Michel
    Lahaye, Sebastien
    Boimond, Jean-Louis
    ICINCO 2006: Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics: SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL, 2006, : 79 - 84
  • [8] Framework for Studying Stability of Switching Max-Plus Linear Systems
    Gupta, Abhimanyu
    van den Boom, Ton
    van der Woude, Jacob
    De Schutter, Bart
    IFAC PAPERSONLINE, 2020, 53 (04): : 68 - 74
  • [9] Optimistic optimization for model predictive control of max-plus linear systems
    Xu, Jia
    van den Boom, Ton
    De Schutter, Bart
    AUTOMATICA, 2016, 74 : 16 - 22
  • [10] A Compositional Model for Multi-Rate Max-Plus Linear Systems
    Elahi, H.
    Geilen, M.
    Basten, T.
    IFAC PAPERSONLINE, 2020, 53 (04): : 54 - 61