Detecting Magnetoelectric Effect in a Metallic Antiferromagnet via Nonreciprocal Rotation of Reflected Light

被引:6
作者
Arakawa, Keito [1 ]
Hayashida, Takeshi [1 ]
Kimura, Kenta [1 ,2 ]
Misawa, Ryusuke [1 ]
Nagai, Takayuki [1 ,3 ,4 ]
Miyamoto, Tatsuya [1 ]
Okamoto, Hiroshi [1 ]
Iga, Fumitoshi [5 ]
Kimura, Tsuyoshi [1 ,6 ]
机构
[1] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan
[2] Osaka Metropolitan Univ, Dept Mat Sci, Sakai, Osaka 5998531, Japan
[3] Univ Tokyo, Quantum Phase Elect Ctr QPEC, Bunkyo Ku, Tokyo 1138656, Japan
[4] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
[5] Ibaraki Univ, Inst Quantum Beam Sci, Mito, Ibaraki 3108512, Japan
[6] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
关键词
VISUALIZATION; TRANSITIONS; CRYSTAL;
D O I
10.1103/PhysRevLett.131.236702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain types of media breaking both space-inversion (P) and time-reversal (T) symmetries but preserving their combination PT exhibit the polarization rotation of reflected light even when that of transmitted light is prohibited. Such an effect is termed nonreciprocal rotation of reflected light (NRR). Although NRR shows nearly the same phenomenon as the magnetooptical Kerr effect or, equivalently, the Hall effect at optical frequencies, its origin is distinct and ascribed to a magnetoelectric (ME) effect at optical frequencies, i.e., the optical ME effect. Here we show the observation of NRR in a metallic antiferromagnet TbB4. The result demonstrates that the ME effect in a metallic system, which is considered to be ill defined, can be detected using reflected light. Furthermore, we spatially resolve antiferromagnetic domains in TbB4 by microscope observations of NRR. Our work offers a unique way to probe the ME effect in metallic systems.
引用
收藏
页数:6
相关论文
共 56 条
  • [1] Theory of optical axion electrodynamics and application to the Kerr effect in topological antiferromagnets
    Ahn, Junyeong
    Xu, Su-Yang
    Vishwanath, Ashvin
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] Astrov D. N., 1960, Zh. Eksp. Teor. Fiz, V38, P984
  • [3] Antiferromagnetic spintronics
    Baltz, V.
    Manchon, A.
    Tsoi, M.
    Moriyama, T.
    Ono, T.
    Tserkovnyak, Y.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [4] Birss R. R., 1966, Symmetry & Magnetism
  • [5] Atomic spin structure of antiferromagnetic domain walls
    Bode, M.
    Vedmedenko, E. Y.
    Von Bergmann, K.
    Kubetzka, A.
    Ferriani, P.
    Heinze, S.
    Wiesendanger, R.
    [J]. NATURE MATERIALS, 2006, 5 (06) : 477 - 481
  • [6] Seeing is believing: visualization of antiferromagnetic domains
    Cheong, Sang-Wook
    Fiebig, Manfred
    Wu, Weida
    Chapon, Laurent
    Kiryukhin, Valery
    [J]. NPJ QUANTUM MATERIALS, 2020, 5 (01)
  • [7] Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field
    Chernyshov, Alexandr
    Overby, Mason
    Liu, Xinyu
    Furdyna, Jacek K.
    Lyanda-Geller, Yuli
    Rokhinson, Leonid P.
    [J]. NATURE PHYSICS, 2009, 5 (09) : 656 - 659
  • [8] Dzyaloshinskii I. E., 1959, ZH EKSP TEOR FIZ, V37, P881
  • [9] Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt)
    Feng, Wanxiang
    Guo, Guang-Yu
    Zhou, Jian
    Yao, Yugui
    Niu, Qian
    [J]. PHYSICAL REVIEW B, 2015, 92 (14)
  • [10] DOMAIN TOPOGRAPHY OF ANTIFERROMAGNETIC CR2O3 BY 2ND-HARMONIC GENERATION
    FIEBIG, M
    FROHLICH, D
    SLUYTERMAN, G
    PISAREV, RV
    [J]. APPLIED PHYSICS LETTERS, 1995, 66 (21) : 2906 - 2908