Numerical Study of Fluid-Solid Interaction in Rotational Extrusion Flow

被引:0
作者
Zhou, Yanan [1 ]
He, Qiaolin [1 ]
Nie, Min [2 ]
Yang, Changhua [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Polymer Res Inst, Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Fluid particle dynamics method; cylindrical coordinates; incompressible Navier-Stokes; finite difference; repulsive force; FICTITIOUS DOMAIN METHOD; SIMULATION; MOTION;
D O I
10.4208/eajam.2023-040.050323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fluid particle dynamics method is employed to study the fluid-solid interaction problem, which can avoid the explicit implementation of fluid particle boundary condition and capture the hydrodynamic interaction well. We solve the incompressible Navier-Stokes equation coupled with the rigid body motion equation in polar or cylindrical coordinates. A pressure stabilization scheme is used to solve the system in polar coordinates for two dimensional case and cylindrical coordinates for three dimensional case. Our objective is to understand numerically the fluid-solid interaction in rotational extrusion flow. We numerically verify the correctness of method presented here and give comparative analysis for different parameters. We present the Jeffery orbit formulation in annular region. Numerical experiments show that the fluid particle dynamics method is reliable and efficient for numerical simulation of particulate flow in cylindrical coordinate system.
引用
收藏
页码:24 / 46
页数:23
相关论文
共 30 条
[1]  
Cebeci T., 2005, COMPUTATIONAL FLUID, P10
[2]   Processing Pathways Decide Polymer Properties at the Molecular Level [J].
Chandran, Sivasurender ;
Baschnagel, Jorg ;
Cangialosi, Daniele ;
Fukao, Koji ;
Glynos, Emmanouil ;
Janssen, Liesbeth M. C. ;
Mueller, Marcus ;
Muthukumar, Murugapvan ;
Steiner, Ullrich ;
Xu, Jun ;
Napolitano, Simone ;
Reiter, Guenter .
MACROMOLECULES, 2019, 52 (19) :7146-7156
[3]   Direct numerical simulation of fluid flow laden with many particles [J].
Cho, SH ;
Choi, HG ;
Yoo, JY .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2005, 31 (04) :435-451
[4]   Physical foundation of the fluid particle dynamics method for colloid dynamics simulation [J].
Furukawa, Akira ;
Tateno, Michio ;
Tanaka, Hajime .
SOFT MATTER, 2018, 14 (19) :3738-3747
[5]   An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity [J].
Gao, Min ;
Wang, Xiao-Ping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 :704-718
[6]  
Glowinski R, 1999, INT J NUMER METH FL, V30, P1043, DOI 10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO
[7]  
2-Y
[8]   A FICTITIOUS DOMAIN METHOD FOR EXTERNAL INCOMPRESSIBLE VISCOUS-FLOW MODELED BY NAVIER-STOKES EQUATIONS [J].
GLOWINSKI, R ;
PAN, TW ;
PERIAUX, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 112 (1-4) :133-148
[9]   A distributed Lagrange multiplier fictitious domain method for particulate flows [J].
Glowinski, R ;
Pan, TW ;
Hesla, TI ;
Joseph, DD .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1999, 25 (05) :755-794
[10]  
Glowinski R., 2003, Numerical Methods for Fluids (Part 3), V9, DOI DOI 10.1016/S1570-8659(03)09003-3