Asymmetric Contour Uncertainty Estimation for Medical Image Segmentation

被引:2
作者
Judge, Thierry [1 ]
Bernard, Olivier [3 ]
Kim, Woo-Jin Cho [2 ]
Gomez, Alberto [2 ]
Chartsias, Agisilaos [2 ]
Jodoin, Pierre-Marc [1 ]
机构
[1] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ, Canada
[2] Ultr Ltd, Oxford OX4 2SU, England
[3] Univ Lyon 1, Univ Lyon, CNRS, CREATIS,Inserm U1294,UMR5220, Villeurbanne, France
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III | 2023年 / 14222卷
关键词
Uncertainty estimation; Image segmentation;
D O I
10.1007/978-3-031-43898-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aleatoric uncertainty estimation is a critical step in medical image segmentation. Most techniques for estimating aleatoric uncertainty for segmentation purposes assume a Gaussian distribution over the neural network's logit value modeling the uncertainty in the predicted class. However, in many cases, such as image segmentation, there is no uncertainty about the presence of a specific structure, but rather about the precise outline of that structure. For this reason, we explicitly model the location uncertainty by redefining the conventional per-pixel segmentation task as a contour regression problem. This allows for modeling the uncertainty of contour points using a more appropriate multivariate distribution. Additionally, as contour uncertainty may be asymmetric, we use a multivariate skewed Gaussian distribution. In addition to being directly interpretable, our uncertainty estimation method outperforms previous methods on three datasets using two different image modalities. Code is available at: https://github.com/ThierryJudge/contouring-uncertainty.
引用
收藏
页码:210 / 220
页数:11
相关论文
共 29 条
[1]  
Ayhan M. S., 2018, MEDICAL IMAGING DEEP
[2]  
Azzalini A., 2013, Institute of Mathematical Statistics Monographs: The Skew -Normal and Related Families Series, V3
[3]   PHiSeg: Capturing Uncertainty in Medical Image Segmentation [J].
Baumgartner, Christian F. ;
Tezcan, Kerem C. ;
Chaitanya, Krishna ;
Hotker, Andreas M. ;
Muehlematter, Urs J. ;
Schawkat, Khoschy ;
Becker, Anton S. ;
Donati, Olivio ;
Konukoglu, Ender .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :119-127
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[6]   Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-class Segmentation [J].
Camarasa, Robin ;
Bos, Daniel ;
Hendrikse, Jeroen ;
Nederkoorn, Paul ;
Kooi, Eline ;
van der Lugt, Aad ;
de Bruijne, Marleen .
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, UNSURE 2020, GRAIL 2020, 2020, 12443 :32-41
[7]  
Chen L.C., 2017, RETHINKING ATROUS CO, DOI DOI 10.48550/ARXIV.1706.05587
[8]  
Corbière C, 2019, ADV NEUR IN, V32
[9]  
DeVries T, 2018, Arxiv, DOI arXiv:1807.00502
[10]   Improving Anatomical Plausibility in Medical Image Segmentation via Hybrid Graph Neural Networks: Applications to Chest X-Ray Analysis [J].
Gaggion, Nicolas ;
Mansilla, Lucas ;
Mosquera, Candelaria ;
Milone, Diego H. ;
Ferrante, Enzo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) :546-556