Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI

被引:9
作者
Chen, Zhihan [1 ,2 ]
Chen, Keliang [3 ]
Li, Yuxin [1 ,4 ]
Geng, Daoying [1 ,2 ,4 ]
Li, Xiantao [5 ]
Liang, Xiaoniu [3 ]
Lu, Huimeng [3 ]
Ding, Saineng [3 ]
Xiao, Zhenxu [3 ]
Ma, Xiaoxi [3 ]
Zheng, Li [3 ]
Ding, Ding [3 ]
Zhao, Qianhua [3 ,6 ,7 ,8 ]
Yang, Liqin [1 ,4 ]
机构
[1] Fudan Univ, Huashan Hosp, Dept Radiol, 12 Middle Wulumuqizhong Rd, Shanghai 200040, Peoples R China
[2] Fudan Univ, Acad Engn & Technol, Shanghai, Peoples R China
[3] Fudan Univ, Huashan Hosp, Dept Neurol, 12 Middle Wulumuqizhong Rd, Shanghai 200040, Peoples R China
[4] Fudan Univ, Inst Funct & Mol Med Imaging, Shanghai, Peoples R China
[5] Fudan Univ, Huashan Hosp, Dept Crit Care Med, Shanghai, Peoples R China
[6] Fudan Univ, Natl Ctr Neurol Disorders, Huashan Hosp, Shanghai, Peoples R China
[7] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[8] Fudan Univ, Huashan Hosp, Natl Clin Res Ctr Aging & Med, Shanghai, Peoples R China
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; functional connectivity; mild cognitive impairment; resting-state functional magnetic resonance imaging; support vector machine; EIGENVECTOR CENTRALITY; PARIETAL CORTEX; BRAIN NETWORK; FMRI; CONNECTIVITY; CLASSIFICATION; HIPPOCAMPUS; BIOMARKERS; DIAGNOSIS; CHILDREN;
D O I
10.1002/hbm.26529
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mild cognitive impairment (MCI) is a critical prodromal stage of Alzheimer's disease (AD), and the mechanism underlying the conversion is not fully explored. Construction and inter-cohort validation of imaging biomarkers for predicting MCI conversion is of great challenge at present, due to lack of longitudinal cohorts and poor reproducibility of various study-specific imaging indices. We proposed a novel framework for inter-cohort MCI conversion prediction, involving comparison of structural, static, and dynamic functional brain features from structural magnetic resonance imaging (sMRI) and resting-state functional MRI (fMRI) between MCI converters (MCI_C) and non-converters (MCI_NC), and support vector machine for construction of prediction models. A total of 218 MCI patients with 3-year follow-up outcome were selected from two independent cohorts: Shanghai Memory Study cohort for internal cross-validation, and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort for external validation. In comparison with MCI_NC, MCI_C were mainly characterized by atrophy, regional hyperactivity and inter-network hypo-connectivity, and dynamic alterations characterized by regional and connectional instability, involving medial temporal lobe (MTL), posterior parietal cortex (PPC), and occipital cortex. All imaging-based prediction models achieved an area under the curve (AUC) > 0.7 in both cohorts, with the multi-modality MRI models as the best with excellent performances of AUC > 0.85. Notably, the combination of static and dynamic fMRI resulted in overall better performance as relative to static or dynamic fMRI solely, supporting the contribution of dynamic features. This inter-cohort validation study provides a new insight into the mechanisms of MCI conversion involving brain dynamics, and paves a way for clinical use of structural and functional MRI biomarkers in future.
引用
收藏
页数:16
相关论文
共 77 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[3]   Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review [J].
Ansart, Manon ;
Epelbaum, Stephane ;
Bassignana, Giulia ;
Bone, Alexandre ;
Bottani, Simona ;
Cattai, Tiziana ;
Couronne, Raphael ;
Faouzi, Johann ;
Koval, Igor ;
Louis, Maxime ;
Thibeau-Sutre, Elina ;
Wen, Junhao ;
Wild, Adam ;
Burgos, Ninon ;
Dormont, Didier ;
Colliot, Olivier ;
Durrleman, Stanley .
MEDICAL IMAGE ANALYSIS, 2021, 67
[4]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[5]  
Badhwar AmanPreet, 2017, Alzheimers Dement (Amst), V8, P73, DOI 10.1016/j.dadm.2017.03.007
[6]   Brain network alterations in Alzheimer's disease measured by Eigenvector centrality in fMRI are related to cognition and CSF biomarkers [J].
Binnewijzend, Maja A. A. ;
Adriaanse, Sofie M. ;
Van der Flier, Wiesje M. ;
Teunissen, Charlotte E. ;
de Munck, Jan C. ;
Stam, Cornelis J. ;
Scheltens, Philip ;
van Berckel, Bart N. M. ;
Barkhof, Frederik ;
Wink, Alle Meije .
HUMAN BRAIN MAPPING, 2014, 35 (05) :2383-2393
[7]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[8]   NEUROPATHOLOGICAL STAGING OF ALZHEIMER-RELATED CHANGES [J].
BRAAK, H ;
BRAAK, E .
ACTA NEUROPATHOLOGICA, 1991, 82 (04) :239-259
[9]   Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease [J].
Bron, Esther E. ;
Klein, Stefan ;
Papma, Janne M. ;
Jiskoot, Lize C. ;
Venkatraghavan, Vikram ;
Linders, Jara ;
Aalten, Pauline ;
De Deyn, Peter Paul ;
Biessels, Geert Jan ;
Claassen, Jurgen A. H. R. ;
Middelkoop, Huub A. M. ;
Smits, Marion ;
Niessen, Wiro J. ;
van Swieten, John C. ;
van der Flier, Wiesje M. ;
Ramakers, Inez H. G. B. ;
van der Lugt, Aad .
NEUROIMAGE-CLINICAL, 2021, 31
[10]   Mild cognitive impairment -: Long-term course of four clinical subtypes [J].
Busse, A. ;
Hensel, A. ;
Guehne, U. ;
Angermeyer, M. C. ;
Riedel-Heller, S. G. .
NEUROLOGY, 2006, 67 (12) :2176-2185