GENERALIZED BARRED PREFERENTIAL ARRANGEMENTS

被引:0
作者
Adell, Jose A. [1 ]
Benyi, Beata [2 ]
Murali, Venkat [3 ]
Nkonkobe, Sithembele [3 ,4 ]
机构
[1] Univ Zaragoza, Fac Ciencias, Dept Metodos Estadist, C Pedro Cerbuna 12, Zaragoza 50009, Spain
[2] Univ Publ Serv Baja, Fac Water Sci, Dept Hydraul Engn, Bajcsy Zsilinszky Utca 12-14, H-6500 Baja, Hungary
[3] Rhodes Univ, Dept Math, ZA-6139 Grahamstown, South Africa
[4] Sol Plaatje Univ, Dept Math Sci, ZA-8301 Kimberley, South Africa
基金
新加坡国家研究基金会;
关键词
barred preferential arrangements; generalized Stirling numbers; geometric polynomials; negative binomial process; IDENTITIES;
D O I
10.22108/TOC.2022.130037.1894
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a generalization of Fubini numbers. We present the combinatorial interpretation as barred preferential arrangements with some additional conditions on the blocks. We provide a proof for a generalization of Nelsen's Theorem. We consider these numbers from a probabilistic view point and demonstrate how they can be written in terms of the expectation of random descending factorial involving the negative binomial process.
引用
收藏
页码:47 / 63
页数:17
相关论文
共 25 条
  • [1] Differential calculus for linear operators represented by finite signed measures and applications
    Adell, J. A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2013, 138 (1-2) : 44 - 82
  • [2] Ahlbach C., 2013, Electron. J. Combin., V20, P55
  • [3] Belbachir H., 2009, Les Annales Rectis, V6, P37
  • [4] Boyadzhiev K. N., 2005, Int. J. Math. Math. Sci, V23, P38
  • [5] Geometric polynomials: properties and applications to series with zeta values
    Boyadzhiev, Kh. N.
    Dil, A.
    [J]. ANALYSIS MATHEMATICA, 2016, 42 (03) : 203 - 224
  • [6] Corcino C. B., 2020, Quaest. Math, V45, P1
  • [7] Corcino R.B., 2001, J MATH RES EXPOSITIO, V21, P337
  • [8] Corcino RB, 2001, ARS COMBINATORIA, V60, P273
  • [9] On Generalized Bell Polynomials
    Corcino, Roberto B.
    Corcino, Cristina B.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [10] Dasef M. E., 1997, College Math. J, V28, P52