Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts

被引:17
|
作者
Li, Xiaojiao [1 ]
Yu, Xiaohu [1 ,2 ]
Yu, Qi [1 ,3 ,4 ]
机构
[1] Shaanxi Univ Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Catalysis, Hanzhong 723001, Peoples R China
[2] Shaanxi Univ Technol, Sch Chem & Environm Sci, Shaanxi Key Lab Catalysis, Hanzhong 723001, Peoples R China
[3] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2 reduction reaction; electrochemical; single-atom catalysts; Cu-based; reaction mechanism; CARBON-DIOXIDE; HYDROGEN EVOLUTION; RATIONAL DESIGN; DOPED ZNO; ELECTROREDUCTION; SELECTIVITY; CONVERSION; ELECTROCATALYSTS; 1ST-PRINCIPLES; ELECTRODES;
D O I
10.1007/s40843-023-2597-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrochemical CO2 reduction reaction (CO2 RR) is a critical route to reduce the concentration of CO2 in the atmosphere and solve the energy crisis by converting CO2 into high-value chemicals and fuels. It is therefore crucial to rationally design efficient and cost-effective electrochemical catalysts. Copper (Cu) is found to be an excellent metal catalyst that can reduce CO2 to hydrocarbons and alcohols, especially C2+ products. However, there exist some problems (such as high overpotential and poor selectivity in CO2 RR) that limit the application of Cu-based catalysts. In recent years, single-atom catalysts (SACs) have become an emerging research frontier in the field of heterogeneous catalysis due to their potential high activity, selectivity, and stability. Herein, the recent progress of various Cu-based SACs for CO2 RR has been reviewed, especially on the regulatory strategies for the interaction of the active site with key reaction intermediates. This interaction is important for designing the active site to optimize the multi-electron reduction step and improve the catalytic performance. Meanwhile, different design strategies, including the regulation of metal centers, Cu-based single-atom alloy catalysts (SAAs), non-metal SACs, tandem catalysts, and composite catalysts, have also been discussed. Finally, the current research challenges and future developments of SACs in CO2 RR have been summarized.
引用
收藏
页码:3765 / 3781
页数:17
相关论文
共 50 条
  • [41] Exclusive CO2-to-formate conversion over single-atom alloyed Cu-based catalysts
    Li, Junjun
    Zhang, Zhicheng
    Hu, Wenping
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (05) : 855 - 857
  • [42] Ligand-engineering Cu-based catalysts to accelerate the electrochemical reduction of CO2
    Liang, Ying
    Zhang, Rui
    Xiao, Kaihong
    Ye, Fenghui
    Ma, Xinyue
    Liu, Wei
    Yin, Hanle
    Mao, Baoguang
    Song, Xiangru
    Hu, Chuangang
    CHEMICAL COMMUNICATIONS, 2024, 60 (35) : 4699 - 4702
  • [43] Harnessing point defects for advanced Cu-based catalysts in electrochemical CO2 reduction
    Tian, Jia
    Huang, Huiting
    Ratova, Marina
    Wu, Dan
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2025, 164
  • [44] Beyond single-atom catalysts: Exploration of Cu dimer and trimer for CO2 reduction to methane
    Yang, Jing
    Liu, Ximeng
    Yuan, Hao
    Sun, Jianguo
    Li, Lidao
    Goh, Kuan Eng Johnson
    Yu, Zhi Gen
    Xue, Junmin
    Wang, John
    Zhang, Yong-Wei
    APPLIED CATALYSIS A-GENERAL, 2022, 642
  • [45] Electrochemical Reduction of CO2 via Single-Atom Catalysts Supported on α-In2Se3
    Yang, Yun
    Liu, Shixi
    Fu, Gang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (26): : 6110 - 6118
  • [46] Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol
    Shi Y.
    Lin G.
    Sun X.
    Jiang W.
    Qiao D.
    Yan B.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 : 287 - 298
  • [47] Progress in Cu-based electrocatalysts for electrochemical CO2 reduction to C2+ products
    Cui, Shaoying
    Li, Siqi
    Deng, Renzhi
    Wei, Lixin
    Yang, Shucheng
    Dai, Shiwei
    Wang, Fanan
    Liu, Song
    Huang, Yanqiang
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (10) : 2697 - 2716
  • [48] Progress in tracking electrochemical CO2 reduction intermediates over single-atom - atom catalysts using operando ATR-SEIRAS - SEIRAS
    Yan, Jing
    Ni, Jiaqi
    Sun, Hongli
    Su, Chenliang
    Liu, Bin
    CHINESE JOURNAL OF CATALYSIS, 2024, 62 : 32 - 52
  • [49] Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction
    Wang, Rui
    Yuan, Yufei
    Bang, Ki-Taek
    Kim, Yoonseob
    ACS MATERIALS AU, 2023, 3 (01): : 28 - 36
  • [50] CO2 reduction on single-atom Ir catalysts with chemical functionalization
    Lin, Zheng-Zhe
    Li, Xi-Mei
    Chen, Xin-Wei
    Chen, Xi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (06) : 3733 - 3740