Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts

被引:17
|
作者
Li, Xiaojiao [1 ]
Yu, Xiaohu [1 ,2 ]
Yu, Qi [1 ,3 ,4 ]
机构
[1] Shaanxi Univ Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Catalysis, Hanzhong 723001, Peoples R China
[2] Shaanxi Univ Technol, Sch Chem & Environm Sci, Shaanxi Key Lab Catalysis, Hanzhong 723001, Peoples R China
[3] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2 reduction reaction; electrochemical; single-atom catalysts; Cu-based; reaction mechanism; CARBON-DIOXIDE; HYDROGEN EVOLUTION; RATIONAL DESIGN; DOPED ZNO; ELECTROREDUCTION; SELECTIVITY; CONVERSION; ELECTROCATALYSTS; 1ST-PRINCIPLES; ELECTRODES;
D O I
10.1007/s40843-023-2597-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrochemical CO2 reduction reaction (CO2 RR) is a critical route to reduce the concentration of CO2 in the atmosphere and solve the energy crisis by converting CO2 into high-value chemicals and fuels. It is therefore crucial to rationally design efficient and cost-effective electrochemical catalysts. Copper (Cu) is found to be an excellent metal catalyst that can reduce CO2 to hydrocarbons and alcohols, especially C2+ products. However, there exist some problems (such as high overpotential and poor selectivity in CO2 RR) that limit the application of Cu-based catalysts. In recent years, single-atom catalysts (SACs) have become an emerging research frontier in the field of heterogeneous catalysis due to their potential high activity, selectivity, and stability. Herein, the recent progress of various Cu-based SACs for CO2 RR has been reviewed, especially on the regulatory strategies for the interaction of the active site with key reaction intermediates. This interaction is important for designing the active site to optimize the multi-electron reduction step and improve the catalytic performance. Meanwhile, different design strategies, including the regulation of metal centers, Cu-based single-atom alloy catalysts (SAAs), non-metal SACs, tandem catalysts, and composite catalysts, have also been discussed. Finally, the current research challenges and future developments of SACs in CO2 RR have been summarized.
引用
收藏
页码:3765 / 3781
页数:17
相关论文
共 50 条
  • [1] Progress in photocatalytic CO2 reduction based on single-atom catalysts
    Hu, Wanyu
    Yang, Haiyue
    Wang, Chengyu
    RSC ADVANCES, 2023, 13 (30) : 20889 - 20908
  • [2] Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning
    Dashuai Wang
    Runfeng Cao
    Shaogang Hao
    Chen Liang
    Guangyong Chen
    Pengfei Chen
    Yang Li
    Xiaolong Zou
    Green Energy & Environment, 2023, 8 (03) : 820 - 830
  • [3] Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning
    Wang, Dashuai
    Cao, Runfeng
    Hao, Shaogang
    Liang, Chen
    Chen, Guangyong
    Chen, Pengfei
    Li, Yang
    Zou, Xiaolong
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (03) : 820 - 830
  • [4] Research progress on electrocatalytic CO2 reduction over carbon-based single-atom catalysts
    Zhang Y.-Y.
    Chen X.-Y.
    Dong L.-Y.
    He L.
    Hao G.-P.
    Li W.-C.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2023, 51 (11): : 1617 - 1632
  • [5] Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction
    Shi, Yongxia
    Hou, Man
    Li, Junjun
    Li, Li
    Zhang, Zhicheng
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
  • [6] Electrochemical CO2 reduction of graphene single-atom/cluster catalysts
    Gao, Yongze
    Zhao, Mengdie
    Jiang, Liyun
    Yu, Qi
    MOLECULAR CATALYSIS, 2024, 562
  • [7] Recent progress of electrochemical reduction of CO2 by single atom catalysts
    Wang, Tian
    Zhang, Jincheng
    Li, Fuhua
    Liu, Bin
    Kawi, Sibudjing
    MATERIALS REPORTS: ENERGY, 2022, 2 (03):
  • [8] Emerging materials for electrochemical CO2 reduction: progress and optimization strategies of carbon-based single-atom catalysts
    Qu, Guangfei
    Wei, Kunling
    Pan, Keheng
    Qin, Jin
    Lv, Jiaxin
    Li, Junyan
    Ning, Ping
    NANOSCALE, 2023, 15 (08) : 3666 - 3692
  • [9] Pulse Manipulation on Cu-Based Catalysts for Electrochemical Reduction of CO2
    Xi, Wanlong
    Zhou, Hexin
    Yang, Peng
    Huang, Huiting
    Tian, Jia
    Ratova, Marina
    Wu, Dan
    ACS CATALYSIS, 2024, 14 (18): : 13697 - 13722
  • [10] MXene-Based Single-Atom Catalysts for Electrochemical Reduction of CO2 to Hydrocarbon Fuels
    Athawale, A.
    Abraham, B. Moses
    Jyothirmai, M. V.
    Singh, Jayant K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (51): : 24542 - 24551