Deep learning-based asteroid surface temperature evaluation from disk-resolved near-infrared spectra for thermal excess correction

被引:0
作者
Lind, Leevi [1 ]
Penttila, Antti [2 ]
Riihiaho, Kimmo A. [1 ]
MacLennan, Eric [2 ]
Polonen, Ilkka [1 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, Mattilanniemi 2, Jyvaskyla 40100, Finland
[2] Univ Helsinki, Dept Phys, POB 64, Helsinki 00014, Finland
基金
芬兰科学院;
关键词
Asteroid; Near; -infrared; Disk; -resolved; Reflectance spectroscopy; Thermal excess; Neural network; SPECTROMETER; MISSION; ALBEDOS;
D O I
10.1016/j.pss.2023.105738
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Near-Earth asteroids can become warm enough to emit radiation at near-infrared wavelengths, close to 2.5 & mu;m. Thermal radiation can interfere with reflectance measurements in these wavelengths, and should be evaluated and corrected for. Current methods for correcting disk-resolved measurements either rely on previous Earth-based observations or perform heavy computations to find the thermally emitted spectral radiance. Using results based on disk-integrated observations may lead to errors for some cases where the target asteroid surface is not ho-mogeneous. Computational efficiency is desirable for those future missions where data processing is to be per-formed on-board the spacecraft due to a limited downlink budget, such as missions employing small spacecraft. We propose to predict the temperature of an asteroid surface element from its observed spectral radiance using a convolutional neural network. The thermal spectral radiance emitted by the asteroid surface can be approximated using the temperature, and subsequently subtracted from the original spectral radiance. The model was tested using OSIRIS-REx measurements of asteroid (101955) Bennu with promising results. The performance of the model should be validated further in the future as asteroid missions produce suitable data. Both accuracy and speed of the method could likely be increased significantly with further development.
引用
收藏
页数:14
相关论文
共 54 条
  • [1] Abadi M., 2015, TensorFlow: Large-scale machine learning on heterogeneous systems
  • [2] Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion
    Annala, Leevi
    Honkavaara, Eija
    Tuominen, Sakari
    Polonen, Ilkka
    [J]. REMOTE SENSING, 2020, 12 (02)
  • [3] [Anonymous], 2000, ASTM STAND EXTR SPEC
  • [4] DATA MINING AND MACHINE LEARNING IN ASTRONOMY
    Ball, Nicholas M.
    Brunner, Robert J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07): : 1049 - 1106
  • [5] Compositional distributions and evolutionary processes for the near-Earth object population: Results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS)
    Binzel, R. P.
    DeMeo, F. E.
    Turtelboom, E. V.
    Bus, S. J.
    Tokunaga, A.
    Burbine, T. H.
    Lantz, C.
    Polishook, D.
    Carry, B.
    Morbidelli, A.
    Birlan, M.
    Vernazza, P.
    Burt, B. J.
    Moskovitz, N.
    Slivan, S. M.
    Thomas, C. A.
    Rivkin, A. S.
    Hicks, M. D.
    Dunn, T.
    Reddy, V.
    Sanchez, J. A.
    Granvik, M.
    Kohout, T.
    [J]. ICARUS, 2019, 324 : 41 - 76
  • [6] Enabling radiation tolerant heterogeneous GPU-based onboard data processing in space
    Bruhn, Fredrik C.
    Tsog, Nandinbaatar
    Kunkel, Fabian
    Flordal, Oskar
    Troxel, Ian
    [J]. CEAS SPACE JOURNAL, 2020, 12 (04) : 551 - 564
  • [7] Chollet F., 2015, Keras
  • [8] The OSIRIS-REx Thermal Emission Spectrometer (OTES) Instrument
    Christensen, P. R.
    Hamilton, V. E.
    Mehall, G. L.
    Pelham, D.
    O'Donnell, W.
    Anwar, S.
    Bowles, H.
    Chase, S.
    Fahlgren, J.
    Farkas, Z.
    Fisher, T.
    James, O.
    Kubik, I.
    Lazbin, I.
    Miner, M.
    Rassas, M.
    Schulze, L.
    Shamordola, K.
    Tourville, T.
    West, G.
    Woodward, R.
    Lauretta, D.
    [J]. SPACE SCIENCE REVIEWS, 2018, 214 (05)
  • [9] The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS
    Coradini, A.
    Capaccioni, F.
    Erard, S.
    Arnold, G.
    De Sanctis, M. C.
    Filacchione, G.
    Tosi, F.
    Barucci, M. A.
    Capria, M. T.
    Ammannito, E.
    Grassi, D.
    Piccioni, G.
    Giuppi, S.
    Bellucci, G.
    Benkhoff, J.
    Bibring, J. P.
    Blanco, A.
    Blecka, M.
    Bockelee-Morvan, D.
    Carraro, F.
    Carlson, R.
    Carsenty, U.
    Cerroni, P.
    Colangeli, L.
    Combes, M.
    Combi, M.
    Crovisier, J.
    Drossart, P.
    Encrenaz, E. T.
    Federico, C.
    Fink, U.
    Fonti, S.
    Giacomini, L.
    Ip, W. H.
    Jaumann, R.
    Kuehrt, E.
    Langevin, Y.
    Magni, G.
    McCord, T.
    Mennella, V.
    Mottola, S.
    Neukum, G.
    Orofino, V.
    Palumbo, P.
    Schade, U.
    Schmitt, B.
    Taylor, F.
    Tiphene, D.
    Tozzi, G.
    [J]. SCIENCE, 2011, 334 (6055) : 492 - 494
  • [10] The VIR Spectrometer
    De Sanctis, M. C.
    Coradini, A.
    Ammannito, E.
    Filacchione, G.
    Capria, M. T.
    Fonte, S.
    Magni, G.
    Barbis, A.
    Bini, A.
    Dami, M.
    Ficai-Veltroni, I.
    Preti, G.
    [J]. SPACE SCIENCE REVIEWS, 2011, 163 (1-4) : 329 - 369